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Abstract
In model-based reinforcement learning, planning
with an imperfect model of the environment has
the potential to harm learning progress. But even
when a model is imperfect, it may still contain
information that is useful for planning. In this
paper, we investigate the idea of using an imper-
fect model selectively. The agent should plan in
parts of the state space where the model would be
helpful but refrain from using the model where
it would be harmful. An effective selective plan-
ning mechanism requires estimating predictive
uncertainty, which arises out of aleatoric uncer-
tainty, parameter uncertainty, and model inade-
quacy, among other sources. Prior work has fo-
cused on parameter uncertainty for selective plan-
ning. In this work, we emphasize the importance
of model inadequacy. We show that heteroscedas-
tic regression can signal predictive uncertainty
arising from model inadequacy that is comple-
mentary to that which is detected by methods de-
signed for parameter uncertainty, indicating that
considering both parameter uncertainty and model
inadequacy may be a more promising direction
for effective selective planning than either in iso-
lation.

1. Introduction
Reinforcement learning is a computational approach to
learning via interaction. An algorithmic agent is tasked
with determining a policy that yields a large cumulative
reward. Generally, the framework under which this agent
learns its policy falls into one of two groups: model-free
reinforcement learning or model-based reinforcement learn-
ing. In model-free reinforcement learning, the agent acts
in ignorance of any explicit understanding of the dynam-
ics of the environment, relying solely on its state to make
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decisions. In contrast, in model-based reinforcement learn-
ing, the agent possesses a model of how its actions affect
the future. The agent uses this model to reason about the
implications of its decisions and plan its behavior.

The model-based approach to reinforcement learning offers
significant advantages in two regimes. The first is domains
in which acquiring experience is expensive. Model-based
methods can leverage planning to do policy improvement
without requiring further samples from the environment.
This is important both in the traditional Markov decision
process setting, where sample efficiency is often an impor-
tant performance metric, and also in a more general pursuit
of artificial intelligence, where an agent may need to quickly
adapt to new goals. Second is the regime in which capacity
for function approximation is limited and the optimal value
function and policy cannot be represented. In such cases,
agents that plan at decision-time can construct temporary
local value estimates whose accuracy exceed the limits im-
posed by capacity restriction (Silver et al., 2008). These
agents are thereby able to achieve policies superior to those
of similarly limited model-free agents.

Far from being special cases, sample-sensitive, limited-
capacity settings are typical of difficult problems in rein-
forcement learning. It is therefore not surprising that many
of the most prominent success stories of reinforcement learn-
ing are model-based. In the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), algorithms that distribute
training across many copies of an exact model of the environ-
ment have been shown to massively outperform algorithms
limited to a single instance of the environment (Kapturowski
et al., 2019). And in Chess, Shogi, Go, and Poker, superhu-
man performance can be reached by means of decision-time
planning on exact transition models (Silver et al., 2018;
Moravčı́k et al., 2017; Brown & Sandholm, 2017).

However, the premise of these successes is not the same as
that of the classical reinforcement learning problem. Rather
than being asked to learn a model from interactions with a
black box environment, these agents are provided an exact
model of the dynamics of the environment. While the latter
is in itself an important problem setting, the former is more
central to the pursuit of broadly intelligent agents.

Unfortunately, learning a useful model from interactions
has proven difficult. While there are some examples of
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success in domains with smooth dynamics (Deisenroth &
Rasmussen, 2011; Hafner et al., 2019), learning an accurate
model in more complex environments, such as the ALE,
remains difficult. In a pedagogical survey of the ALE,
Machado et al. (2018) state “So far, there has been no clear
demonstration of successful planning with a learned model
in the ALE.” Until recently (Schrittwieser et al., 2019), ba-
sic non-parametric models that replay observed experiences
(Schaul et al., 2016) remained convincingly superior to state-
of-the-art parametric models (van Hasselt et al., 2019).

Some of the difficulty of increasing performance with a
learned model arises from the multifold nature of the issue.
Learning a useful model is itself a challenge. But even once
a model is learned, it is not clear when and how an imperfect
model is best used. The use of an imperfect model can be
catastrophic to progress if the model is incorrectly trusted
by the agent (Talvitie, 2017; Jafferjee et al., 2020).

This work concerns itself with how to effectively use an
imperfect model. We discuss planning methods that only
use the model where it makes accurate predictions. Such
techniques should allow the agent to plan in regions of the
state space where the model is helpful, but refrain from
using the model when it would be damaging. We refer to
this idea as selective planning.

There are two interrelated problems involved in selective
planning: determining when the model is and is not ac-
curate, and devising a planning algorithm which uses that
information to plan selectively.

We formulate the first problem as that of predictive un-
certainty estimation and consider three sources of predic-
tive uncertainty—aleatoric uncertainty, parameter uncer-
tainty, and model inadequacy—emphasizing the relevance
of model inadequacy for selective planning under limited-
capacity. We demonstrate that the learned input-dependent
variance (Nix & Weigend, 1994) can reveal the presence of
predictive uncertainty that is not captured by standard tools
for quantifying parameter uncertainty.

We address the second problem by empirically investigat-
ing selective planning in the context of model-based value
expansion (MVE), a planning algorithm that uses a learned
model to construct multi-step TD targets (Feinberg et al.,
2018). The results show that MVE can fail when the model
is subject to capacity constraints. In contrast, we find that se-
lective MVE, an instance of selective planning that weights
the multi-step TD targets according to the uncertainty in
the model’s predictions, can perform sample-efficient learn-
ing even with an imperfect model that otherwise leads to
planning failures.

2. Background
This section provides background on model-based reinforce-
ment learning, sources of predictive uncertainty, and previ-
ous work exploiting estimates of parameter uncertainty for
model-based reinforcement learning.

2.1. Model-Based Reinforcement Learning

Reinforcement learning problems are typically formulated
as a finite Markov decision processes (MDPs). An MDP
is defined by a tuple (S,A, r, p), where S is the set of
states, A is the set of actions, r : S × A × S → R is the
reward function, and p : (st, at, st+1) 7→ P (St+1=st+1 |
St=st, At=at) is the dynamics function. At each time-
step t, the environment is in some state st ∈ S, the agent
executes an action at ∈ A, and the environment transitions
to state st+1 ∈ S and emits a reward rt+1 = r(st, at, st+1).
The agent acts according to a policy π : S → ∆(A), which
maps states to probabilities of selecting each possible action
(we use ∆(X) to denote the simplex on X). The agent
may maintain this policy explicitly or derive it from a value
function v : S → R or an action-value function q : S ×
A → R, which predict an expected discounted cumulative
reward, given the state and state-action pair, respectively.
The agent’s goal is to use its experience to learn a policy
that maximizes expected discounted cumulative reward.

In model-based reinforcement learning, the agent leverages
a model capturing some aspects of the dynamics of the envi-
ronment. This work regards the problem setting in which
the agent must learn this model from its experience, rather
than being endowed with it a priori. In particular, the ex-
periments in this work investigate learning models of the
form m : S × A → Rk ⊃ S (we assume S is embedded
in the standard k-dimensional Euclidean space for some
positive integer k). Such models deterministically predict
the expected next state from the current state and action.
While there is nothing that constrains their predictions to the
state space and they are unable to express non-deterministic
transitions, models of this form can still offer useful infor-
mation.

Dyna (Sutton, 1991) is an approach to model-based rein-
forcement learning that combines learning from real experi-
ence and experience simulated from a learned model. The
characterizing feature of Dyna-style planning is that updates
made to the value function and policy do not distinguish
between real and simulated experience. In this work, we
investigate the idea of selective Dyna-style planning. An ef-
fective selective planning mechanism should focus on states
and actions for which the model makes accurate predictions.
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2.2. Sources of Predictive Uncertainty

Predictive uncertainty, the aggregate uncertainty in a predic-
tion, arises from aleatoric uncertainty (due to randomness
intrinsic to the environment), parameter uncertainty (due
to uncertainty about which set of parameters generated the
data), and model inadequacy, among other sources. This
section discusses the situations in which these sources of
uncertainty appear in the context of model-based reinforce-
ment learning.

Aleatoric Uncertainty: In reinforcement learning,
aleatoric uncertainty comes from the dynamics function
p. If the dynamics function induces non-deterministic tran-
sitions (those which occur with probability greater than zero
but less than one), the agent cannot be certain what transi-
tion will occur. Aleatoric uncertainty is irreducible in the
sense that it cannot be resolved by collecting more samples
or increasing the complexity of the model.

Parameter Uncertainty: Parameter uncertainty is the un-
certainty over the values of the parameters, given a paramet-
ric hypothesis class and the available data. In model-based
reinforcement learning, this is a result of the finite dataset
used to train the model. This dataset will not contain a
transition for every state and action. And for stochastic tran-
sitions, even if a state-action pair has been sampled multiple
times, it is unlikely to have been sampled frequently enough
to accurately reflect the underlying distribution. These in-
sufficiencies cause uncertainty in the sense that is unclear
which parameter values are correct. Unlike aleatoric un-
certainty, parameter uncertainty can be reduced (and in the
limit, eliminated (De Finetti, 1937)) by gathering more data.

Bayesian inference is a common approach to estimating
parameter uncertainty. However, analytically computing
the posterior over parameters is intractable for large neu-
ral networks. A significant body of research on Bayesian
neural networks is concerned with approximating this pos-
terior (MacKay, 1992; Hinton & Van Camp, 1993; Barber
& Bishop, 1998; Graves, 2011; Gal & Ghahramani, 2016;
Gal et al., 2017; Li & Gal, 2017).

The statistical bootstrap is an alternative line of research for
estimating parameter uncertainty (Efron, 1982). These meth-
ods train an ensemble of neural networks, possibly on inde-
pendent bootstrap samples of the original training samples,
and use the empirical parameter distribution of the ensem-
ble to estimate parameter uncertainty (Lakshminarayanan
et al., 2017; Osband et al., 2016; Pearce et al., 2018; Osband
et al., 2018). Ensemble-based methods can be interpreted
as Bayesian approximations only under restricted settings
(Fushiki et al., 2005a;b; Osband et al., 2018), but share the
goal of quantifying uncertainty due to insufficient data.

Model Inadequacy: Model inadequacy refers to the
model’s hypothesis class being unable to express the un-
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Figure 1. A depiction of MVE. A 3-step trajectory is simulated
using an approximate model p̂ from a state-action pair (s0, a0);
the simulated trajectory is used to construct multi-step TD targets;
the TD-targets are combined using a weighted average; the action-
value function q̂ is updated toward the weighted average Uavg .

derlying function generating the data. In reinforcement
learning, it is typical that the true dynamics function is not
an element of the model’s hypothesis class, both because
this functional form is unknown and because the dynamics
functions can be very complex. Thus, even in the limit of
infinite data, the parameter values that most accurately fit
the dataset may not accurately predict transitions. Error due
to model inadequacy can only be resolved by increasing the
capacity of the model.

2.3. Related Work

The idea of using model uncertainty to inform planning
has been studied before (Kurutach et al., 2018; Kalweit
& Boedecker, 2017). A particularly relevant approach is
stochastic ensemble value expansion (STEVE) (Buckman
et al., 2018). STEVE estimates parameter uncertainty by
augmenting model-based value expansion (MVE) (Feinberg
et al., 2018), an extension of DQN (Mnih et al., 2015) in
which model-simulated experience is used to evaluate the
greedy policy, as is shown in Figure 1. STEVE uses the
degree of agreement among an ensemble of neural networks
to approximate the trustworthiness of the model for a par-
ticular rollout length. Rollout lengths with low variance are
given more weight in the update and rollout lengths with
high variance are given less.

3. Limited Capacity Can Harm Planning
A main hypothesis of this work is that neglecting model
inadequacy during planning can cause catastrophic failure.
To establish this idea, we begin by presenting an experiment
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Figure 2. The performance of MVE in Acrobot, for varying model capacity, averaged over 30 runs with shaded region corresponding to
standard error. When the model is given sufficient capacity to express the dynamics, MVE can increase performance, as is shown in the
left two plots. However, when the model is lacking capacity, MVE can catastrophically damage learning, as is shown in the right two plots.

examining the relationship between model capacity and per-
formance in Acrobot (Sutton, 1996), a classic environment
loosely based on a gymnast swinging on a highbar. We ran
MVE with four different network architectures for the value
function: one hidden layer with 64 hidden units, one hid-
den layer with 128 hidden units, two hidden layers with 64
hidden units each, and two hidden layers with 128 hidden
units each. For each network architecture, we determined
the best setting for the step size, the batch size, and the
replay memory size by sweeping over possible parameter
configurations, as detailed in Appendix A.

The results for the value function with one hidden layer with
128 hidden units, shown in Figure 2, suggest that the rela-
tionship between capacity and performance is as anticipated.
When given sufficient capacity to learn a good model, MVE
has the potential to improve the sample efficiency of DQN.
However, as capacity is decreased and the model becomes
unable to accurately reflect the underlying dynamics, MVE
harms learning progress. The results for the other value
function architectures, which can be found in Appendix B,
tell similar stories.

4. Estimating Error Due to Limited Capacity
While neural networks of reasonable sizes are perfectly
capable of expressing the Acrobot dynamics function, this
may not be the case in highly complex domains. To defend
against this possibility, it is desirable to have a mechanism
for detecting error due to model inadequacy.

We hypothesize that methods designed to detect input-
dependent noise should also be able to estimate predictive
uncertainty due to model inadequacy. The intuition behind
this hypothesis is that a complex dynamics function can
equally validly be considered a simple dynamics function
with complex disturbances. Resultantly, methods designed
for heteroscedastic regression may quantify error due to
model inadequacy as heterscedastic disturbances. In con-

-2 -1 2 30 1

-2

0

2

4

observed data6

-4

-6

Figure 3. The target function y = x+ sin(4x) + sin(13x) shown
for the training interval (-1.0, 2.0). The blue points are 300 training
samples drawn uniform randomly from the training interval.

trast, parameter uncertainty methods may overlook predic-
tive uncertainty due to model inadequacy and instead simply
agree on the best parameter values within the hypothesis
class in the limit of data.

4.1. Experimental Setup

To examine this hypothesis, we contrast a subset of parame-
ter uncertainty methods with heteroscedastic regression on
a simple regression problem.

We constructed a dataset of 5,000 training examples using
the function y = x + sin(αx) + sin(βx), where α = 4,
β = 13, and x was drawn uniformly from the interval
(−1.0, 2.0) (see Figure 3). The inputs x are drawn from a
uniform distribution over the interval (−1.0, 2.0).

We applied neural networks to this regression problem and
varied the effective capacity of the model by reducing the
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number of layers and the number of hidden units. In particu-
lar, we used neural networks with three degrees of complex-
ity: 3 hidden layers with 64 hidden units each (referred to
as large network), a single hidden layer with 2048 hidden
units (medium-size network), and a single hidden layer with
64 hidden units (small network). Experimental details are
described in Appendix D.

We compared the following existing methods for estimating
uncertainty in the model’s output.

4.1.1. MONTE CARLO DROPOUT

Gal & Ghahramani (2016) proposed to use dropout (Sri-
vastava et al., 2014) for obtaining uncertainty estimates
from neural networks. Dropout is a regularization method
which prevents overfitting by randomly dropping units dur-
ing training. Monte Carlo dropout estimates uncertainty
by computing the variance of the predictions obtained by
M stochastic forward passes through the network. This
technique can be interpreted through the lens of Bayesian
inference; that is, the dropout distribution approximates the
Bayesian posterior (Gal, 2016).

4.1.2. ENSEMBLE OF NEURAL NETWORKS

Ensembling independently trains K randomly initialized
neural networks. The variance in the predictions of individ-
ual networks is used to estimate predictive uncertainty aris-
ing from parameter uncertainty (Lakshminarayanan et al.,
2017; Osband et al., 2016; Pearce et al., 2018). Intuitively,
the individual networks in an ensemble should make similar
predictions in the regions of the input space where suffi-
cient samples have been observed, while making dissimilar
predictions elsewhere.

4.1.3. RANDOMIZED PRIOR FUNCTIONS

Randomized prior functions (RPF) (Osband et al., 2018) are
an extension of ensembling. Each network in the ensem-
ble is coupled with a random but fixed prior function—a
randomly initialized neural network whose weights remain
unchanged during training. The prediction of an individual
ensemble member is the sum of its trainable network and its
prior function. For Gaussian linear models, this approach
is equivalent to exact Bayesian inference (Osband et al.,
2018).

4.1.4. RANDOMIZED PRIOR FUNCTIONS WITH
BOOTSTRAPPING

Bootstrapping can be combined with both randomized prior
functions (Osband et al., 2018) and ensembling (Osband
et al., 2016). We focus on the former as it has been noted to
provide better uncertainty estimates (Osband et al., 2018).

4.1.5. HETEROSCEDASTIC REGRESSION

Neural networks are typically trained to output a point
estimate as a function of the input. When trained with
mean-squared error, the probabilistic interpretation is that
the point estimate corresponds to the mean of a Gaus-
sian distribution with fixed input-independent variance σ2:
p(y|x) = N (fµ(x), σ2); maximizing the likelihood in this
case leads to least-squares regression.

An alternative is to assume that the variance is also input-
dependent: p(y|x) = N (fµ(x), fσ2(x)), where fµ(x) is
the predicted mean and fσ2(x) is the predicted variance.
Under this assumption, maximizing the likelihood leads to
the following loss function (Nix & Weigend, 1994):

Li(θ) =
(yi − fµ(xi))

2

2fσ2(xi)
+

1

2
logfσ2(xi). (1)

The learned variance fσ2(x) can be predictive of stochas-
ticity. The network can incur less penalty in high-noise
regions of the input space by predicting high variance. We
hypothesize that this learned variance should also be pre-
dictive of the errors in the context of limited capacity—the
network can maintain a small loss by allowing the variance
to be larger in regions where it lacks the capacity to make
accurate predictions.

4.2. Experimental Results

The results of applying each of the above methods to the
regression problem are shown in Figure 4 for a single con-
figuration of the learning rate. We found the results to be
consistent across learning rate configurations (see Appendix
D for additional results).

With a sufficiently powerful network (large network), the en-
semble learns to accurately predict the target function, and
the predictive variance of the ensemble (purple) appropri-
ately assesses the predictive uncertainty—the ensemble vari-
ance is large outside the training distribution. We observe
the same effect for other parameter uncertainty methods.

As the capacity is reduced (small and medium-sized net-
works), all methods fail to fit the target function accurately
over the entire input space. But whereas learned variance re-
liably reflects the errors within the training distribution, the
parameter uncertainty methods fail to do so. These results
support the idea that parameter uncertainty is insufficient for
selective planning in the face of limited capacity. Instead,
they suggest that a combination of a parameter uncertainty
and model inadequacy would yield a more robust error de-
tection mechanism than either individually, as is indicated
by the rightmost column, which combines learned variance
with ensembling.
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Medium-sized
Network

Ensemble

Small
Network

-1 2

0

6

-6

Dropout Randomized
Priors + Bootstrap Learned 

Variance + EnsembleRandomized
Priors

Learned
Variance

Large
Network

Figure 4. An evaluation of uncertainty methods on a simple regression problem when the model is subject to capacity limitations. The
ground truth function is in blue in all plots. Each row presents the mean predictions and uncertainty estimates for a particularly-sized
neural network after training for 300 epochs; each column presents the results for a particular uncertainty method. Uncertainty estimates
are represented by shaded intervals; the estimated predictive uncertainty arising from parameter uncertainty is in purple; the learned
variance is in red; darker purple/red intervals show mean ± 1 standard-deviation and lighter intervals show mean ± 2 standard-deviation.
Learning rate is 0.001 for all methods; the results for other configurations of the learning rate (consistent with the results presented here)
can be found in Appendix D.

5. Selective Planning
In this section, we investigate the utility of learned variance
in the context of model-based reinforcement learning; in
particular, we ask whether learned variance can be used to
plan selectively with a low-capacity model that otherwise
leads to the planning failures observed in Section 3.

Toward this end, we describe a technique using learned vari-
ance to do selective model-based value expansion. Given a
maximum rollout length H , consider the weighted-average
of h-step targets (see Figure 1):

Uavg(s0, a0) =

H∑
h=1

wh(s0, a0)Uh(s0, a0).

We would like the weight on an h-step target to be in-
versely related to the cumulative uncertainty σ2

1:h(s0, a0) =∑h
i=1 σ

2
i (s0, a0) over the h-step trajectory. Given the cu-

mulative uncertainty of the targets, we determine the weight
of an individual target by computing the softmax

wh(s0, a0) =
exp(−σ2

1:h(s0, a0)/τ)∑H
i=1 exp(−σ2

1:i(s0, a0)/τ)
(2)

where τ is a hyper-parameter which regulates the weight-
ing’s sensitivity to the predicted uncertainty.

To handle the multidimensional output space, we assume
independence across different dimensions of the state (i.e.,
an isotropic Gaussian assumption) and learn a separate vari-
ance for each dimension. To acquire a scalar value, we sum
the variance values across the dimensions of the state space
(i.e., we use the trace of the diagonal covariance matrix).
Further implementation details, including the range of val-
ues for the parameter sweep, and the configuration of the
rest of the hyper-parameters are included in Appendix C.

5.1. Selective MVE in Acrobot

In this section, we apply the planning algorithm described
above, which we call selective MVE, to Acrobot. We com-
pare selective MVE using learned variance to standard MVE,
DQN with no model-based updates, and selective MVE us-
ing the true squared error (given by an oracle) to weight its
rollouts. The results, presented in Figure 5, show that selec-
tive MVE under capacity constraints (models with 4 and 16
hidden units) not only matches the asymptotic performance
of DQN, effectively avoiding planning failures, but is also
more sample-efficient than the DQN baseline.

Interestingly, selective MVE improves sample-efficiency
even in the case of larger models consisting of 64 and 128
hidden units. This may indicate that selective planning
allows the agent to make effective use of the model early
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Selective - Known Error
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Figure 5. Results of selective MVE (τ = 0.1). The learning curves are averaged over 30 runs; the shaded regions show the standard error.
Selective MVE with models of 4 hidden units (d) and 16 hidden units (c) not only matches the asymptotic performance of DQN, but also
achieves better sample-efficiency than the DQN baseline. Selective MVE improves the sample-efficiency even in the case of larger models
consisting of 64 hidden units (b) and 128 hidden units (a).

in training when many of its predictions are unreliable but
some are accurate.

To get a better of sense of the robustness of selective MVE
to model errors, we compute the expected rollout length of
each of the four model sizes for both the learned variance
and the true error, as is shown in Figure 6. (The expected
rollout length of an update is the weighted average over the
rollout lengths used in equation 2.) There is a clear ordering
in the expected rollout length of the four models; h–step
targets consisting of longer trajectories are given relatively
more weight when the model is larger (and as a result, more
accurate). Selective MVE with the smallest model of 4
hidden units does not use the model as much as its variants
with bigger models, but the limited use is still sufficient to
improve the sample efficiency of DQN, while preventing
model inaccuracies from hurting control performance.

2.5

16 hidden units

128 hidden units

100020

DQN

2.0

1.5

1.0

Uniform Average (H=3)

2.5

4 hidden units

Uniform Average (H=4)

1000 Number of steps in 1000s

2.0

1.0

Uniform Average (H=2)

 64 hidden units

Learned VarianceKnown Error

Expected
Rollout 
Length

Figure 6. The plots contrast the expected rollout length of selective
MVE (τ = 0.1) for the known error (left) and the learned variance
(right). Each reported curve is the average of 30 runs; the shaded
regions show the standard error.

5.1.1. IMPROVED PERFORMANCE CANNOT BE
ATTRIBUTED TO THE LOSS FUNCTION

To verify that the gains in performance are not due to the
change in loss function (selective MVE uses a heteroscedas-
tic regression loss function, whereas MVE uses MSE—a
homoscedastic loss function) we evaluated MVE with the

-100

1000

MVE - 4 hidden units

MVE - 128 hidden units

1000

-100

Number of steps in 1000s1000

-100

MVE - 16 hidden units

Rollout Length 4

-500

-300

Average
Return

(a)

DQN

(c) (d)

-500

Rollout Length 3 Rollout Length 2

MVE - 64 hidden units

1000 20

-100

(b)
20

20
-500

-500

Figure 7. Performance of MVE when the model is learned using
the heteroscedastic regression’s loss function. The learning curves
are averaged over 10 runs; the shaded regions show the standard
error.

same loss function as that of selective MVE. The results,
presented in Figure 7, suggest that simply changing the loss
function does not lead to an accurate model, and that the
model still needs to be used selectively.

5.1.2. IMPROVED PERFORMANCE CANNOT BE
REPLICATED WITH ENSEMBLING

To verify that the same performance gains could not be
achieved from ensembling, we applied a variant of selective
MVE using ensemble variance, rather than learned variance.
While selective MVE with ensemble variance performs com-
parably to selective MVE with learned variance early in
training, the performance of the planner using ensemble
variance consistently collapses later in training, presumably
as a result of the ensemble converging to similar, incorrect
parameter values. Results for the architecture with 4 hidden
units are shown in Figure 8.
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Figure 8. Results of selective MVE (τ = 0.1) over 500 thousand
steps. The learning curves are averaged over 30 runs; the shaded
regions show the standard error. Selective MVE with ensem-
ble variance initially offers performance competitive with that of
learned variance, but ultimately collapses.

6. Complementary Nature of Parameter
Uncertainty and Model Inadequacy

In Section 4, we argued that predictive uncertainty arising
from parameter uncertainty is by itself is insufficient for
selective planning under capacity constraints, and needs to
be used in combination with predictive uncertainty arising
from model inadequacy. In Section 5, we used learned vari-
ance to estimate predictive uncertainty arising from model
inadequacy, and found that it can ensure robust planning
under capacity limitations. In this section, we emphasize the
complementary nature of parameter uncertainty and model
inadequacy.

We extend our Acrobot example and train an ensemble of
neural networks with heteroscedastic loss functions. We
use an ensemble of 20 single hidden layer networks with
4 hidden units, and use the mean value of the ensemble to
make a prediction. To compute the variance, we consider
the ensemble as a uniform mixture over Gaussians, along
each dimension. We compute the variance of the mixture
model along each dimension and sum the variances as we
did with heteroscedastic regression to get a scalar value.

To evaluate the efficacy of the combined variance relative
to learned variance and ensembles variance, we sample a
batch of transitions from the replay buffer at every time-step
and compute the correlation of each variance with the true
mean squared error. The results, shown in Figure 9, suggest
that in the context of limited capacity: 1) Ensemble vari-
ance becomes a less useful indicator of error as training pro-
gresses, presumably because the ensemble tends to converge

1000 Number of steps in 1000s

0.7

0.9

0.6
20

Correlation
Coefficient

Combined Variance

Learned Variance

Ensemble Variance

Figure 9. Correlation of the true squared error with the learned
variance, the ensemble variance, and the combined variance over
the course of the agent’s training. Each reported curve is the
average of 30 runs; the shaded regions show the standard error.

to similar predictions. 2) Learned variance becomes more
predictive of error as it learns from more data. 3) Combined
variance is more strongly correlated with true error than
both learned variance and ensemble variance over the entire
course of training. While existing work (Chua et al., 2018)
has investigated combining heteroscedastic regression with
ensembling in the context of non-deterministic domains,
our results suggest that doing so has positive benefits under
capacity limitations even in the absence of stochasticity.

7. Conclusion
In this work, we investigated the idea of selective plan-
ning: the agent should plan only in parts of the state space
where the model is accurate. We highlighted the impor-
tance of model inadequacy for selective planning under
limited model capacity. Our experiments suggest that het-
eroscedastic regression, under an isotropic Gaussian as-
sumption, can reveal the presence of error due to model
inadequacy, whereas methods for quantifying parameter un-
certainty do not do so reliably. In the context of model-based
reinforcement learning, we show that incorporating learned
variance into planning can outperform the equivalent model-
free method, even when using the model non-selectively
would lead to catastrophic failure. Lastly, we offer evidence
that ensembling and heteroscedastic regression have com-
plementary strengths, suggesting that their combination is
a more robust selective planning mechanism than either in
isolation.
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A. Parameter Sweep Strategy
To determine the best-performing hyper-parameter setting,
we evaluate each configuration using 10 independent runs
initialized with a different random seed, leading to as many
learning curves. We averaged the learning curves and
summed the second half of the averaged learning curves to
obtain a single number representing the performance of the
particular configuration. If the best-performing parameter
setting falls on the boundary of the range of tested values for
any hyper-parameter, we widened the range until this was
not true. We evaluated the best-performing configuration
using 30 additional runs, each initialized with a different
random seed. We report the average learning curve, along
with its standard error. In all experiments, the resolution
of the reported curves is 2,000 steps: we log the average
returns of the most recent 20 episodes every 2,000 steps.

B. Baseline Algorithms
B.1. Deep Q-Networks (DQN)

We estimate DQN’s action-value function using a fully con-
nected neural network with ReLU activations. We repeat
all experiments with four different fully connected neural
network architectures: 1 hidden layer with 64 hidden units,
1 hidden layer with 128 hidden units, 2 hidden layers with
64 hidden units each, and 2 hidden layers with 128 hidden
units each. For each network architecture, we determine
the best setting for the step-size, the batch size, and the
replay memory size by sweeping over possible parameter
configurations. For DQN baseline, the range of values for
the parameter sweep, and the configuration of the rest of the
hyper-parameters are presented in Table 1.

B.2. Model-Based Value Expansion (MVE)

We implement MVE by extending the DQN algorithm with
the model-based policy evaluation technique described in
Figure 1 of the main paper. We instantiate MVE with a
deterministic model learned using the squared error loss.
We assume the reward signal to be known; that is, we only
learn the dynamics function. We study the effect of model
capacity by progressively reducing the size of the neural
network used for model learning. In particular, we use
four variants of a single hidden layer neural network, which
vary only in the number of hidden units: 128 hidden units,
64 hidden units, 16 hidden units, and 4 hidden units. In
all cases, we learn the model online using the experience
gathered in the replay buffer: at every time-step, alongside
the MVE value function update, we separately sample a
batch of transitions to update the model.

Once we have identified the best hyper-parameter config-
uration for the DQN baselines which vary in their value
function architecture, we keep the same hyper-parameter

configuration for their MVE extensions, and only sweep
over the model learning rate for each of the four model ar-
chitectures. The range of values for the parameter sweep,
and the configuration of the rest of the hyper-parameters are
presented in Table 2.

C. Selective Model-based Value Expansion:
Additional Details and Results

Learned Variance Implementation Details: We modify
the base neural networks for the dynamics function to output
the diagonal covariances alongside the mean next-state vec-
tor. We enforce the positivity constraint on the covariances
by passing the corresponding output through the softplus
function log(1 + exp(·)); and, for numerical stability, we
also add a small constant value of 10−6 to the predicted
covariances (Lakshminarayanan et al., 2017). The model is
optimized using the loss function

L(s,a,s)(θ) = [µθ(s, a)− s′]TΣ−1θ (s, a)[µθ(s, a)− s′]
+ log det Σθ(s, a),

where Σθ(s, a) is assumed to be diagonal. For input (si, ai),
σ2(si, ai) is the trace of Σθ(si, ai). The range of values for
the parameter sweep, and the configuration of the rest of the
hyperparameters are presented in Table 3.

Additional Results for Selective MVE with Learned
Variance. We present Acrobot results for the value func-
tion network architectures with a single hidden layer and
64 hidden units (Figure 10-12), with 2 hidden layers and
64 hidden units each (Figure 13-15), and with a 2 hidden
layer with 128 hidden units each (Figure 16-18). All re-
ported curves are obtained by averaging 30 runs; the shaded
regions represent the standard error. These results are con-
sistent with the discussion in the main paper and provide
additional evidence for the utility of learned variance for
selective planning. For instance, they suggest that selective
planning is useful even when the value function itself has
restricted capacity—the network with only 64 hidden units,
for example.

Selective MVE with ensemble variance. The ensemble-
based selective MVE is exactly like the learned-variance
variant except for one difference: the uncertainty, σ(s, a),
is the variance of the predictions made by the individual
members of the ensemble. (We add the components of the
variance vector to obtain a single number.) The range of
values for the parameter sweep, and the configuration of the
rest of the hyperparameters are presented in Table 4.
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Figure 10. The effect of model capacity on MVE’s performance with the value function network consisting of a single hidden layer and
64 hidden units.
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Figure 11. Results of selective MVE (τ = 0.1) for the value function network consisting of a single hidden layer and 64 hidden units.

D. Regression Example: Additional Details
and Results

In Section 4’s regression experiment, we use Adam opti-
mizer (Kingma & Ba, 2015) for all the methods. We set the
batch size to 16. We consider the learning rates 0.01, 0.001,
and 0.0001. We use ReLU activations for non-linearities,
and initialize the networks with Glorot initialization (Glorot
& Bengio, 2010).

For Monte Carlo dropout, we set the dropout probability
p = 0.1. To obtain the variance, we perform 10 stochastic
forward passes.

For the ensemble method, we use an ensemble of 10 neural
networks. All networks in the ensemble are trained using
the squared-error loss.

For randomized prior functions with bootstrapping, we train
each member of the ensemble on a bootstrapped dataset
generated from the original dataset by randomly sampling
with replacement.

For heteroscedastic regression, we train separate neural
networks for the mean and the variance, and optimize
them jointly using the loss from Equation 1 (main paper).
While we change the capacity of the mean network across
the three regimes (large network, medium-sized network,
and small network), we restrict the variance network to be
small—a single hidden layer with 64 hidden units—in all
three regimes.

For each uncertainty method, every configuration is eval-
uated using 5 independent runs initialized with a different
random seed. While the results remain consistent across the
independent runs, we present results for a single run chosen
randomly. We present results for additional configurations
of the learning rate in Figure 19-20.
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Figure 12. Effect of τ on the performance of Selective MVE with the value function network consisting of a single hidden layer and 64
hidden units.
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Figure 13. The effect of model capacity on MVE’s performance with the value function network consisting of 2 hidden layers with 64
hidden units each.
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Figure 14. Results of selective MVE (τ = 0.1) with value function network of consisting of 2 hidden layers with 64 hidden units each.
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Figure 15. Effect of τ on the performance of Selective MVE with the value function network consisting of hidden layers with 64 hidden
units each.
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Figure 16. The effect of model capacity on MVE’s performance with the value function network consisting of 2 hidden layers with 128
hidden units each.
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Figure 17. Results of selective MVE (τ = 0.1) with the value function network consisting 2 hidden layers with 128 hidden units each.
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Figure 18. Effect of τ on the performance of Selective MVE with the value function network consisting of 2 hidden layers with 128
hidden units each.

Table 1. DQN hyperparameters used in the experiments. The step-size, the batch size, and the replay memory size were determined by
sweeping over the range specified in the respective rows.

Hyperparameter Values

Optimizer RMSProp
Step-size (α) 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001
Batch size 16, 32, 64
Replay memory size 10000, 20000, 50000
Target network update frequency 256 environment steps
Training frequency 1 update for every environment step
Exploration rate (ε) 0.1
Discount factor (γ) 1.0

Table 2. MVE specific hyperparameters. For each simulated trajectory length (rollout length), the model learning step-size (β) was
determined by sweeping over the range specified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Homoscedastic (MSE)
Model learning frequency 1 update for every environment step
Simulated trajectory length 2, 3, 4
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Table 3. Hyperparameters for Selective-MVE. Model learning step-size (β) was determined by sweeping over the range specified in the
respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Heteroscedastic
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ ) 0.1

Table 4. Hyperparameters for ensemble-based Selective MVE in Acrobot. Model learning step-size (β) was determined by sweeping over
the range specified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Homoscedastic (MSE)
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ ) 0.1
Number of networks 5
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Figure 19. Regression results for the learning rate 0.01.
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Figure 20. Regression results for the learning rate 0.0001.


