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Many people rely on online social networks as sources of news and information, and the spread of media
content with ideologies across the political spectrum influences online discussions and impacts offline actions.
To examine the impact of media in online social networks, we generalize bounded-confidence models of opinion
dynamics by incorporating media accounts as influencers in a network. We quantify partisanship of content
with a continuous parameter on an interval, and we formulate higher-dimensional generalizations to incorporate
content quality and increasingly nuanced political positions. We simulate our model with one and two ideological
dimensions, and we use the results of our simulations to quantify the “entrainment” of content from nonmedia
accounts to the ideologies of media accounts in a network. We maximize media impact in a social network
by tuning the number of media accounts and the numbers of followers of those accounts. Using numerical
computations, we find that the entrainment of the ideology of content that is spread by nonmedia accounts to
media ideology depends on a network’s structural features, including its size, the mean number of followers
of its nodes, and the receptiveness of its nodes to different opinions. We then introduce content quality—a key
novel contribution of our work—into our model. We incorporate multiple media sources with ideological biases
and quality-level estimates that we draw from real media sources and demonstrate that our model can produce
distinct communities (“echo chambers”) that are polarized in both ideology and quality. Our model provides a
step toward understanding content quality and ideology in spreading dynamics, with ramifications for how to
mitigate the spread of undesired content and promote the spread of desired content.
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I. INTRODUCTION

Online social media (such as Twitter, Facebook, Instagram,
and others) have become extremely influential sources of
news in daily life. For example, over two thirds of American
adults who participated in a recent survey responded that
social media, and their associated networks, is their primary
source for obtaining news [1]. Given this large audience and
the ease of sharing content online, the content that spreads on
online social networks can have important consequences on
public opinion, policy, and voting [2,3].

The spread of content in a social network depends on
the actions and biases of the individuals in that network.
Individual user preferences play a strong role in the choice to
consume news that conforms to (or even enhances) previously
held views [4]. One reason that propaganda, misinformation,
and disinformation have become so widespread on social-
media platforms is that users are more likely to share a false or
misleading story if it seems to confirm or support their biases
[5,6]. Another challenge is that content is also spread and
amplified through bot, cyborg, and sockpuppet accounts [7].
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The political biases of content and the accounts that
spread it goes beyond a naive separation of “liberal” versus
“conservative,” and the political spectrum of ideology can
include axes for social views (“progressive” versus “conserva-
tive”), economic views (“socialist” versus “capitalist”), views
on government involvement (“libertarian” versus “authoritar-
ian”), and others. Opinions can also be issue-dependent. In a
large body of research, Poole and Rosenthal [8,9] developed
methods to classify ideological positions in roll-call voting
in the United States Congress in ideological space, and they
found that two dimensions is typically sufficient to capture an
overwhelming majority of the variance of ideologies. Their
work laid the foundation of the Voteview project [10], which
characterizes the ideologies of legislators in the United States
Congress based on their voting records. Multidimensional
political ideologies have also been explored in the context of
the United States Supreme Court. For example, by examining
singular value decompositions, Sirovich [11] demonstrated
that decisions by the judges in the second Rehnquist Court are
well-described by a two-dimensional space. This has typically
also been true of voting on legislation in the United States
Congress [12].

Political biases are not the only way in which people
judge the news that they consume and share on social media.
As the prevalence of misinformation, disinformation, and
“fake news” becomes increasingly prominent in everyday life
and the global conversations of talking heads, social-media
users are also considering the quality of news content. For
example, in the aforementioned Pew Research Study [1], the
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majority of respondents acknowledged that the news that they
see, consume, and spread on social-media platforms may
be inaccurate. There is evidence that poor-quality content
travels deeper, more broadly, and faster than high-quality
content (such as fact-based reporting) [13]. The Pew Research
study [1] also concluded that these differences in spreading
patterns are primarily the result of human actions, rather than
arising from bot or cyborg accounts.

A large body of work has examined the spread of content
on social media [13,14]. One approach is to mathematically
model the spread of content on social media using ordi-
nary differential equations, where the equations can capture
changes in time of the proportion of a population that is
“susceptible to,” “exposed to,” “infected with,” or “immune
to” the propagation of such content (e.g., a rumor) [15–18].
Such compartmental models have the advantage of being ana-
lytically tractable, but they do not capture the effects of either
network structure or heterogeneity in account characteristics.
Other studies have focused instead on data-driven or com-
putational approaches [4,5,13,19]. One important research
direction in this vein is quantifying the existence of distinct
communities and “echo chambers” [20–23] on social media,
wherein individuals interact primarily with other like-minded
individuals. Some recent work on modeling the spread of con-
tent has tried to bridge the gap between these two approaches
by introducing mathematical models that capture network
features of social media [24,25], including some very recent
mechanistic models of radicalization dynamics [26] and filter
bubbles [27]. Our approach in the present paper has some sim-
ilarities with those in Prasetya and Murata [28], who gener-
alized an independent-cascade model to explore the effects of
selective exposure and connection strengths on news propaga-
tion, and Martins [29], who developed a continuous-opinion,
discrete-action model to explore the emergence of extremism.
Extremism in models of opinion dynamics was also studied
recently in the context of radicalization and terrorism [30].

In the present paper, we formulate and study a model for
the influence of media accounts on the ideology and quality
of content that is shared in an online social network. First,
we develop a general content-spreading model with an n-
dimensional continuous ideology space and spreading choices
that are based on a bounded-confidence mechanism [31–33].
We also model how to include media accounts as influencer
nodes in a network. This has been considered in other recent
work, such as in the context of voters models with discrete-
valued opinions [34,35]. In our work, we conduct extensive
numerical simulations to examine the impact of media ac-
counts on content in examples with one and two ideologi-
cal dimensions. We then introduce content quality into our
model; this is a key novel feature of our work. Using the
resulting enhanced model, we employ numerical simulations
to examine the effect of multiple media sources on the “en-
trainment” (with one possible uncharitable interpretation as
“brainwashing”) of nonmedia nodes in the network by media
nodes. As a parallel to our consideration of media nodes,
radical or charismatic leaders have also been introduced into
voter models [36,37], DeGroot models [38], and bounded-
confidence models [39].

Our work advances the study of online content spreading
in several ways. In our model, we propose a measure of

media impact; this allows us to quantify the influence that
a set of media accounts has on the ideology of content in a
social network at consensus. Our model has the advantageous
feature of supporting a multidimensional continuous ideology
space for content, although we are not the first to employ
a multidimensional opinion space. See Refs. [40,41] for a
discussion of consensus in bounded-confidence models in
Rd and Ref. [42] for some results on the convergence and
stability of such models. For wider-ranging discussions of
consensus dynamics and opinion models, see Refs. [31,43].
A key novelty of our work is the introduction of content
quality into the spreading dynamics; to our knowledge, our
model is the first to explore the effects of content quality on
spreading. This is an important advancement for two reasons:
(1) the quality of news content has a major effect on its
spreading dynamics, and it is therefore important to study it
from a dynamical perspective; and (2) the spread of poor-
quality news content is a major social problem. Investigations
into such problems—especially ones that produce potential
mechanistic insights into them—have the potential to help
motivate strategies for mitigating their effects.

Our paper proceeds as follows. In Sec. II, which gives a
concise overview of our work, we give a nontechnical sketch
of our model and briefly outline our key results. In Sec. III, we
develop our bounded-confidence model with content spread-
ing. We discuss network structures that incorporate both non-
media and media accounts in Sec. III A, and we introduce our
content updating rule in Sec. III B. In Sec. IV, we examine
the dynamics of our model with one ideological dimension for
content. We describe how we simulate the model in Sec. IV A,
and we quantify media impact for different parameter val-
ues and network architectures in Sec. IV B. We present a
generalization of our model to two ideological dimensions
for content in Sec. V. In Sec. VI, we develop our model
further to incorporate a notion of media quality into its content
updating rule. In Sec. VII, we show simulations and results
of media impact with the incorporation of content quality,
including an example in which we draw media biases and
qualities from a publicly available, hand-curated distribution.
We conclude and discuss several possible extensions of our
work in Sec. VIII.

II. OVERVIEW OF OUR MODEL AND RESULTS

The aim of our paper is to advance understanding of the
spread of misinformation and “fake news” on social me-
dia through mathematical modeling. This contrasts with the
more common data-driven, computational approaches to these
problems that tend to use existing models (such as compart-
mental models). An important facet of our approach is that
the underlying spreading mechanisms are based on continu-
ous and potentially multidimensional quantities—specifically,
ideology and quality of content—that result in discrete actions
(spreading a message). By incorporating these continuous
variables into the spreading dynamics, our model (1) provides
a plausible framework to study the spread of extremism on
networks and (2) and lays the foundation for systematic com-
parison with empirical data of the spread of ideologies online.

Our model takes the form of a dynamical process on a
network. It includes (1) a time-independent network structure
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of accounts and relationships between them in an online social
network (see Sec. III A) and (2) a mechanism for the temporal
evolution of the ideology of the content that is produced by
media accounts in that network (see Sec. III B). To represent
the network structure, we construct a graph in which nodes
represent accounts and edges represent followership relation-
ships between these accounts. One can either construct these
networks from empirical data (such as Facebook or Twitter
networks) or using synthetic networks (e.g., from generative
models of random graphs). In a network, we designate each
account as either a media account or a nonmedia account.
Media accounts are accounts that do not follow any other
accounts but are followed by at least one other account. In our
model, we construe media accounts as “influencers,” “opinion
sources,” or “external opinion forcing” in a network. It is for
simplicity that we assume that their content is not influenced
by any other accounts. All other accounts in a network are
nonmedia accounts, which each follow at least one other
account in the network.

We model the content that spreads in an online social
network based on its ideology (see Sec. VII) and eventually
also on its quality (see Sec. VI). We suppose that accounts
in a network spread content during each discrete time step.
We determine the ideology of the content that is spread by an
account at each time step with a simple update rule. A helpful
way to conceptualize the update rule is as follows. At each
time step, each account “reads” the content from all of the
accounts that it follows, and it is influenced only by accounts
whose content is sufficiently similar to the ideology of its own
content. In the next time step, the account spreads new content
whose ideology is a mean of the account’s old ideology
and the aforementioned sufficiently similar ideologies of the
accounts that it reads. As a real-life example, a user may read
several articles on a topic and then create a message (e.g., a
tweet) based on these articles that has their own “spin” on the
material. We give a precise definition of the update rule in
Sec. III B.

An important question that we are able to study with our
model is how much the ideology of the media account(s) in
a network entrains the content that is spread by nonmedia
accounts in that network. That is, how strong does the external
forcing by media need to be to have a concrete impact on
the outcome of the ideological dynamics? To quantify the
amount of media influence, we calculate a summary statistic
that we call media impact. Using numerical simulations of
our model, we illustrate how the number of media accounts
and the number of followers per media account affect the
media impact. Surprisingly, we find that the most successful
media entrainment occurs when there are a moderate number
of media accounts that each have a moderate number of
followers. We study how network parameters (such as the
number of nonmedia accounts) affect this phenomenon in
Secs. IV and V.

An exciting outcome of our modeling and analysis is
that “echo chambers” arise naturally from our content-
spreading mechanism. Following common usage in socio-
logical research (see, e.g., Refs. [20,21]), we use the term
“echo chamber” to refer to a group of nonmedia nodes that
primarily or solely influence each other’s ideologies and are
not influenced much by accounts that are outside the group.

These ideological echo chambers emerge even when there
are many followership connections between accounts in the
different echo chambers. (In our model, the follower relation-
ships do not change, although it would be fascinating to study
a generalization of our model in the form of a coevolving
network.) In Sec. VII, we use a hand-curated distribution of
ideologies and qualities of real-world media outlets as an input
to our model. We observe the emergence of two polarized
communities: one with ideologically moderate, high-quality
content and one with conservative, low-quality content. Our
model is very flexible, as it allows many generalizations and
modifications to study features of interest in online social
networks. For example, one can study the influence of mul-
tiple social-media platforms by generalizing our networks to
multilayer networks, and one can also draw media content
and ideology from different probability distributions. It is
also possible to adapt our model to study other applications
in which one combines continuous parameters (for ideology,
quality, self-confidence, or something else) with discrete ac-
tions based on those parameters. A few examples include
models for gambling in sports, choices between competing
products, and choices of students of majors and courses to
take at a university.

III. A BOUNDED-CONFIDENCE MODEL
WITH CONTENT SPREADING

A. Social network structure

Consider a social network with N nonmedia accounts. We
represent this social network with a graph G(VN , E ), where
each node in the set VN represents an account and each
edge in the set E represents a follower relationship from one
account to another. Specifically, we say that account i is a
follower of account j if there is a directed edge from j to i.
With this structure, we can represent this social network as
an adjacency matrix A, where Ai j = 1 if account i follows
account j and Ai j = 0 otherwise. We do not assume reciprocal
follower relationships, so A is not symmetric in general. We
also assume that the network structure is fixed, so follower
relationships do not change in time.

We now introduce media accounts into the above social
network. Suppose that media accounts do not change their
ideology, as encapsulated in the content that they produce, so
they are not influenced by other accounts. Therefore, the only
edges in media accounts are ones that are directed outward.
In other words, the in-degree of a media account is always
0. Of course, this is a simplification of real-world media
outlets, which may (in some cases) be swayed by individuals
or by public opinion. We make this simplifying assumption
for two reasons: (1) we suppose that the media ideology
represents the ideology of a particular topic or news story
(and such a view of a given media outlet is unlikely to change
much on the timescale of online content spread of a story)
and (2) it allows us to examine the effect of an “external
forcing” of ideological content. Our assumption is analogous
to the inclusion of zealots, which have been studied in various
opinion models, including voter models [36] and the Deffuant
bounded-confidence model [44]. We let M denote the number
of media accounts and nM denote the number of followers
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(i.e., out-edges) per media account. We assume that each
media account has the same number of followers, with one
exception in Sec. VII (where we impose a media follower-
number distribution based on data from real-world media
outlets). Once we add media accounts, the total number of
nodes in a network is N + M.

We represent the ideology of each account in a network at
discrete time t by xt

i (where i ∈ {1, . . . , N + M}), and we take
the ideology space to be continuous and bounded, with xt

i ∈
[−1, 1]d . We allow the ideology space to be d-dimensional,
so we can be more nuanced than the typical choice in prior
research of using d = 1 [45]. At time t , each account spreads
content (perhaps with their own spin, as has been studied
for memes using Facebook data [46]) that reflects its current
ideology xt

i . When it is clear, we will not always write the
superscript t.

B. Content updating rule

We update content synchronously at each discrete time step
in the following way. Accounts update their content by averag-
ing the ideologies of observed content that is sufficiently close
to their own opinion. We say that an account is receptive to
such content. Accounts include their own ideology at the pre-
vious time step when determining their location in ideological
space in a time step. During this step, they share content with
their new ideology. Accounts see content only from accounts
that they follow; therefore, media accounts are not receptive
to any other content. We define a receptiveness parameter c,
which gives the distance in ideology within which an account
is receptive. With this notation, we define the set of accounts
to which account i is receptive to be Ii = { j ∈ {1, . . . , N +
M}|Ai j = 1; dist(x j, xi ) < c}. We also have to decide how to
measure the distance dist(·, ·) in ideological space. One can
consider any metric, and we choose to use the �p norm.

The update rule for the ideology of an account is

xt+1
i = 1

|Ii| + 1

⎛
⎝xt

i +
∑
j∈Ii

xt
j

⎞
⎠, (1)

which we can also write as

xt+1
i = 1

|Ii| + 1

⎛
⎝xt

i +
N+M∑
j=1

Ai jxt
j f

(
xt

j, xt
i

)⎞⎠, (2)

where f (x) = 1 if dist(x j, xi ) < c and f (x) = 0 otherwise. In
Fig. 1, we show a schematic of this update rule with a small,
concrete example. Our model builds on previous work in
opinion dynamics. Our consensus-forming mechanism from
averaging ideology is reminiscent of the influential work of
DeGroot [47]. Although this is a standard choice, a recent
paper by Mei et al. [48] suggested that weighted-median
influence is also a reasonable choice for consensus formation.
In the present paper, we draw our bounded-confidence mech-
anism from the Hegselmann–Krause (HK) [33] and Deffuant
[32,45] models of continuous opinion dynamics. Bounded-
confidence updates are also related to the DeGroot–Friedkin
(DF) model of social power [49].

(b)(a)

FIG. 1. A schematic of the content updating rule in our model.
In (a), we show the ideology of nodes in a social network at time
t . In (b), we show their ideologies in the next time step (after we
have applied the update rule). In this example, there are M = 2
media nodes (gray circles) and N = 4 nonmedia nodes. To make
this example more concrete, let’s focus on the highlighted node
(in yellow). The yellow node follows four other accounts, two of
which are media accounts and two of which are nonmedia accounts.
If we take the receptiveness parameter to be c = 0.5, the yellow
node is receptive only to content from three of these accounts
(specifically, the ones that are surrounded by dashed boxes). After
averaging the content from the accounts to which it is receptive,
the yellow account updates its ideology for the next time step
to xt+1 = 1

4 (0.7 + 0.5 + 0.9 + 0.9) = 0.75. During time step t + 1,
this account shares content with that ideology.

IV. DYNAMICS WITH A ONE-DIMENSIONAL IDEOLOGY

As an example, we examine content spreading when our
model has one ideological dimension, where we interpret the
value xi ∈ [−1, 1] as the political viewpoint of the content of
account i on a liberal–conservative axis. We take xi = −1 to
be very liberal, xi = 1 to be very conservative, and xi = 0 to
be moderate. We use the distance dist(x j, xi ) = |x j − xi|. We
then write the content updating rule for these evolving pieces
of one-dimensional political content [see Eq. (2)] by writing

f (x j, xi ) =
{

1 , if |x j − xi| < c
0 , otherwise .

(3)

In this example, we suppose that there are M media accounts
that all have the same political opinion xM ∈ [−1, 1]. There
are multiple possible interpretations of this assumption. For
example, one can interpret it as M different media outlets
that share the same message, which has a given political bias
(as represented by a particular location in ideological space).
Another way to interpret it is as one media account with
M − 1 affiliated sockpuppet accounts, which it is using to help
spread its message with a specified political bias.

A. Simulations

In each network, we suppose that there are N nonmedia
accounts, and we vary the number M of media accounts
and the number nM of followers of each media account. We
assume that all media accounts in a given simulation have an
equal number of followers, although it would be interesting
to extend our model by drawing nM from a distribution of
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FIG. 2. Individual trials of our model on the Reed College Face-
book network (which has N = 962 nonmedia nodes) with different
levels of media influence. We influence the convergence time and
content-spreading dynamics by varying the media-account parame-
ters M and nM . (a) With low media influence, most accounts converge
to the location x = 0 in ideological space. (b) For larger values
of M and nM , a large fraction of the nonmedia accounts converge
to the ideological position of the media nodes. (c) For still larger
values of these parameters, splitting in ideology occurs very rapidly,
resulting in a smaller fraction of nonmedia accounts that converge
to the media’s ideology. In each simulation in this figure, we evenly
distribute the initial ideologies of nonmedia accounts and we set the
ideological position of all media accounts to xM = 0.9.

FIG. 3. Media impact for our model on the Reed College net-
work (which has N = 962 nonmedia nodes) with different numbers
of media accounts (M) on the vertical axis and followers per media
account (nM ) on the horizontal axis. All media accounts have the
same ideological position of xM = 0.9. The colors indicate the values
of R, the mean of the impact summary diagnostic [see Eq. (7)] for
distance from media ideology over 50 trials. Dark red indicates the
most media impact (i.e., the largest values of R), and white indicates
the least impact. The ideological position xM of the media accounts
and the initial ideological positions of the nonmedia accounts are
the same as those in Fig. 2. The arrows designate the regions of the
plot that correspond to the mean media impact for the three panels
in Fig. 2.

the numbers of followers. Unless we note otherwise, we use
200 trials for each numerical experiment, and we interpret a
trial to have “converged” if |xt

i − xt−1
i | < 10−4 for all i for

ten consecutive steps. For simplicity, we set the receptiveness
parameter to take the value c = 0.5, except for Fig. 8, where
we examine the effects of varying this parameter. For a de-
tailed discussion on the effects of the receptiveness parameter
in bounded-confidence models, see Meng et al. [45].

We initialize the nonmedia accounts to have evenly-spaced
initial ideologies, so

x0 =
[
−1,−1 + 2

N − 1
, . . . , 1

]
.

We uniformly randomly permute the starting values of non-
media nodes for each trial, so they are not spatially ordered
in the network. In each trial, each media account has nM

distinct followers, which we choose uniformly at random
from the nonmedia accounts. We choose the followers of each
media account independently, so it is possible for a nonmedia
account to follow multiple media accounts.

In Fig. 2, we show examples of individual trials with
different numbers of media accounts and different numbers
of followers per media account. We run our model on the
Reed College Facebook network from the FACEBOOK100 data
set [50]. The networks in this data set are Facebook friend-
ship networks on university campuses from one day in fall
2005. In our simulations, we use only the largest connected
component of each Facebook network to represent nonmedia
accounts, and we note that the friendship connections between
nonmedia accounts in these networks are bidirectional. In
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FIG. 4. Heat maps of the summary diagnostic R for media impact in the Facebook networks of various universities from the FACEBOOK100
data set [50] illustrate that the largest media impact occurs for moderate numbers of media accounts with moderate numbers of followers. In
each panel, the vertical axis gives the number of media accounts (M), the horizontal axis gives the number of followers per media account
(nM ), and the colors indicate the mean impact summary diagnostic (R) over 50 trials. Dark red indicates the most media impact (i.e., the largest
values of R), and white indicates the least impact. The Facebook networks are (a) Amherst, (b) Bowdoin, (c) Caltech, (d) Haverford, (e) Reed,
(f) Simmons, and (g) Swarthmore.

Fig. 2, we show the ideology of each of the Reed College
network’s N = 962 nonmedia accounts on the vertical axis
and the simulation time t on the horizontal axis. We take the
media opinion to be xM = 0.9. These trials suggest that media
nodes influence both convergence time and content-spreading
dynamics. We explore these ideas further in Sec. IV B.

B. Media influence with a one-dimensional opinion space

Our simulations of our content-spreading model suggest
that the number of nonmedia accounts that converge to the
ideological position of the media nodes—as we just illustrated
for an example (see Fig. 2) in which all media nodes have
the same ideology—depends nontrivially both on the number
of media accounts and on the number of followers per media
account. In this section, we present simulations that illuminate

the level of media influence on a variety of real and synthetic
networks. We continue to assume that all media nodes have
the same ideological position.

We introduce an order parameter that we use as a diagnos-
tic to measure the impact of media nodes on the ideological
positions at convergence. Let xb

i denote the ideological posi-
tion of account i at convergence in the absence of media influ-
ence. We establish a mean baseline ideology R0 by computing
the mean distance between the ideological positions (xb

i ) of
nonmedia accounts at convergence and the media ideology
xM . In mathematical terms, this baseline is

R0 = 1

N

N∑
i=1

∥∥xb
i − xM

∥∥
2 . (4)
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FIG. 5. Heat maps of the summary diagnostic R for media impact of our model on various synthetic networks illustrate that the largest
media impact occurs for moderate numbers of media accounts with moderate numbers of followers for a variety of network architectures. In
each panel, the vertical axis gives the number of media accounts (M), the horizontal axis gives the number of followers per media account
(nM ), and the colors indicate the media impact diagnostic (R), which we compute as a mean over 200 trials. Dark red indicates the most
media impact (i.e., the largest values of R), and white indicates the least impact. In (a), we use a star network in which all nonmedia accounts
follow one central nonmedia account, which also follows the peripheral nonmedia accounts. In (b), we use a directed ring lattice in which each
nonmedia account follows k = 25 neighboring nonmedia accounts. In (c), we construct a directed variant of a Watts–Strogatz network from
the directed ring lattice with k = 25. In it, we rewire follower connections with a probability of β = 0.5. In (d), we use a directed variant of
an Erdős–Rényi network in which we take the expected mean out-degree (i.e., the mean number of nonmedia accounts that are followed by a
nonmedia account) to be k = 25. In (e), we use a complete network. For the directed ER and WS networks, we construct a new network for
each of the 200 trials.

The quantity R0 characterizes the mean effect on nonmedia
nodes, for one trial, of the dynamics for a given network
structure in the absence of media influence. Because the
outcome depends on the initial ideological positions of the
nonmedia accounts, we average R0 over many trials.

Once we have calculated the baseline ideology R0, we
construct a similar order parameter RM that characterizes the
mean outcome of the dynamics for the same network after we
introduce media nodes. Let x∗

i denote the ideological position
of account i at convergence in a network with media influence.
The associated media-influenced ideology diagnostic is

RM = 1

N

N∑
i=1

‖x∗
i − xM‖2 . (5)

The order parameters R0 and RM allow us to quantify the
impact of media nodes on content-spreading dynamics, where
we note that one can also define time-dependent analogs of (4)
and (5). We define the media impact R for one trial to be the
ratio of the mean baseline ideological distance to the media-
influenced ideological distance in that trial:

R = R0

RM
. (6)

We can also obtain an overall media impact

R = R0

RM
(7)

by averaging the media-influenced opinion function RM over
some number (e.g., 200) of trials. We interpret the media
impact in the following way. If R = 1, the media has not had
an influence on the “average” (specifically, the mean) ideolog-
ical position of the nonmedia accounts (and the content that
they spread) at convergence. If R ∈ [0, 1), the media nodes
have driven the mean ideological position of the accounts to
be farther from the media’s ideological position than is the
case without the media accounts. Finally, if R > 1, the mean
ideological position of the nonmedia accounts (and hence of
the content that they spread) is closer to the media ideology
than it would be without the media accounts, with larger
values of R indicating a stronger impact.

Equation (7) gives one of multiple possible summary
diagnostics to measure media influence. Another option is
to measure the mean of the distances between the media
and nonmedia ideologies; that is, one can use only the ex-
pected value of RM from Eq. (5). This alternative entails
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FIG. 6. Heat maps of the media impact diagnostic R for directed ER networks with different values of the expected mean number k of
nonmedia accounts that nonmedia accounts follow. We show results for (a) k = 2, (b) 10, (c) 25, and (d) 50. Our simulations suggest that
media impact is larger for progressively larger k. The vertical axis is the number of media accounts (M), the horizontal axis is the number
of followers per media account (nM ), and the colors represent the media impact diagnostic (R), which we average over 200 trials. Dark red
indicates the most media impact (i.e., the largest values of R), and white indicates the least impact.

an impact level of RM ∈ [0, 2], where small values of RM

represent considerable “entrainment” to the media ideology.
That is, the media nodes have successfully influenced (e.g.,
“brainwashed,” to describe it in an uncharitable way) many
nonmedia accounts in a network. Large values of RM represent
low levels of media influence. Using this alternative impact
function for the experiments in this section gives the same
qualitative results to what we report using (7).

In Fig. 3, we illustrate media impact values for differ-
ent numbers of media accounts (M) and numbers of media
followers (nM). We show the mean value of the summary
diagnostic R over 50 trials. These simulations suggest a sur-
prising result: the highest levels of adoption of media ideology
do not occur for the largest values in (nM, M ) parameter
space. Instead, the most successful scenario for promoting
widespread adoption of the media ideology is to spread the
content through a moderate number of media accounts, each
of which has a moderate number of followers. This observa-
tion is consistent with previous empirical observations that
accounts with a small number of followers can significantly
promote the spreading of content on Twitter [51]. For a
very small number of media nodes (or if the media nodes
have very few followers), as in Fig. 2(a), the media ideology
has very low impact. A large number of media nodes with
many followers per account [as in Fig. 2(c)] produces some

impact, yielding values of R in the interval (1, 2). However,
we observe a larger impact when there are a moderate number
of media accounts that each have a moderate number of
followers [see Fig. 2(b)]. In this situation, we often obtain
R � 2.

In Fig. 4, we show heat maps of the media entrainment
values (using the summary diagnostic R) for our model for
social networks from the FACEBOOK100 data set [50]. Each
such network consists of people at a particular university who
are connected to each other via Facebook friendships (which
yield bidirectional edges) from one day in fall 2005. We add
media accounts to each network in the way that we described
previously for the Reed College network in Sec. IV A. For
each of the FACEBOOK100 networks that we examine, our
simulations produce a distinct region with large media impact
(specifically, with R � 2). In each case, the largest amount of
media impact does not occur for the largest values of the two
quantities in (nM, M ) parameter space.

In Fig. 5, we show heat maps of the media entrainment
values (using the summary diagnostic R) for our model for a
variety of synthetic network architectures, each of which has
100 nonmedia accounts. For clarity, we first briefly describe
how we construct each of these networks. These networks are
a directed ring lattice, a star, a directed variant of Erdős–Rényi
(ER) networks, a directed variant of Watts–Strogatz (WS)
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FIG. 7. Heat maps of the media impact diagnostic R for directed ER networks with different numbers of nonmedia accounts (N) for a fixed
ratio (k/N) of the expected mean number of nonmedia accounts that nonmedia accounts follow to the total number of nonmedia accounts. We
show results for (a) N = 50 and k = 13, (b) N = 100 and k = 25, (c) N = 500 and k = 125, and (d) N = 1000 and k = 250. Our simulations
suggest that both the media impact R and the spread of the media impact (which we define to be (max{R} − min{R}) over all (nM , M ) pairs)
increase with N . The vertical axis is the number of media accounts (M), the horizontal axis is the number of followers per media account (nM ),
and the colors represent the media impact diagnostic (R), which we average over 200 trials. Dark red indicates the most media impact (i.e., the
largest values of R), and white indicates the least impact. Unlike in our other figures, we have not scaled the color range to be the same across
these four plots; this aids in visualizing the difference in the spread of impact values for networks of different sizes.

networks, and complete networks. In the star network, all but
one of the nonmedia accounts follow one central nonmedia
account. These edges are bidirectional, so the central non-
media account follows all of the other nonmedia accounts. We
construct a directed ring lattice as follows. Each nonmedia
account follows k other nonmedia accounts, where the ith
node follows nodes {i + 1, i + 2, . . . , i + k} (mod N ). In this
case, the edges are not bidirectional (so, for example, account
1 follows account 2, but account 2 does not follow 1). We
construct a directed variant of a WS network by starting
with this directed ring lattice and rewiring each edge with
probability β = 0.5 [52]. We rewire a directed edge from
node i to node j by selecting a new node j′ uniformly at
random from the nodes that account i does not currently
follow; we remove the edge from i to j and add an edge
from i to j′. We construct directed ER networks, which have
an expected mean out-degree of k = 25, as a variant of the
G(N, p) model. (In other words, the expected mean number
of nonmedia accounts that a node follows is k = 25.) For the
directed ER and WS networks, we construct a new network
for each trial, so one should interpret our simulation results
as a sample mean over many networks. Although all of these
networks have the same number of nonmedia accounts, the

region of parameter space in which the media has the most
impact differs across different networks. This suggests that
network architecture plays an important role in determining
the level of media involvement that is necessary for media
accounts to exert “global” influence in a network.

We now examine the media impact on directed ER net-
works as we vary k, the expected mean number of nonmedia
accounts that a nonmedia account follows. In Fig. 6, we
show heat maps of the media impact summary diagnostic
R for directed ER networks with different expected mean
out-degrees. As we increase the expected mean out-degree k,
we observe that media impact also increases.

We now perform numerical experiments in which we vary
the size of the directed ER networks by varying the number
of nonmedia accounts. To try to isolate the effect of network
size, we fix the ratio (k/N) of the expected mean number (k)
of nonmedia accounts that a nonmedia account follows to the
total number (N) of nonmedia accounts for each simulation.
As in our earlier observations, we see in Fig. 7 that the media
impact increases as we increase the number N of nonmedia
nodes. However, in this case, we observe a progressively
larger spread in the media entrainment diagnostic R for pro-
gressively larger N . For example, for N = 1000 and k = 250,
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FIG. 8. Heat maps of the media impact diagnostic R for directed ER networks for different values of the receptiveness parameter c. We
show results for (a) c = 0.1, (b) c = 0.2, (c) c = 0.3, (d) c = 0.4, and (e) c = 0.5. For small values of c, the receptiveness of accounts is
too small for the media accounts to impact the mean ideological positions of the nonmedia accounts. For progressively larger values of c,
we observe progressively larger media impact. The vertical axis is the number of media accounts (M), the horizontal axis is the number of
followers per media account (nM ), and the colors represent the media impact diagnostic (R), which we average over 200 trials. Dark red
indicates the most media impact (i.e., the largest values of R), and white indicates the least impact.

the spread of the media impact (which we define to be
(max{R} − min{R}) over all (nM, M ) pairs) is approximately
88.2048 − 0.9980 = 87.2068. However, for N = 50 and k =
13, the spread is approximately 1.4295 − 1.0364 = 0.3931 in
our simulations.

In Fig. 8, we illustrate the effect of varying the receptive-
ness parameter c. If the receptiveness is very small, nonmedia
accounts in a network adjust their ideological positions only if

the content that they see is very close to their current ideology.
Consequently, we observe little or no media impact on the
ideological positions of the nonmedia nodes in the network.
For sufficiently large receptiveness, however, the media do
impact the mean ideological position of nonmedia nodes, with
a larger impact for larger values of c.

One natural generalization of our model is to consider
the effect of varying the weighting of an individual’s current

FIG. 9. Heat maps of the media impact diagnostic R for directed ER networks for different values of the self-weight: (a) w = 3, (b) w = 5,
and (c) w = 10. In our numerical experiments, even when accounts weight their own ideology more heavily than those of the accounts that
they follow, we observe similar qualitative dynamics as when we do not incorporate the parameter w into our model. The vertical axis is the
number of media accounts (M), the horizontal axis is the number of followers per media account (nM ), and the colors represent the media
impact diagnostic (R), which we average over 200 trials. Dark red indicates the most media impact (i.e., the largest values of R), and white
indicates the least impact.
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FIG. 10. In our simulations, we observe an interesting relation-
ship between media impact and convergence time. In the top panel,
we show a heat map of the mean convergence time (in color, where
yellow is the longest time and blue is the shortest) versus the number
of media accounts (M) on the vertical axis and the number of
followers per media account (nM ) on the horizontal axis. In the
bottom panel, we show the mean media impact R versus the mean
convergence time. Each circle represents one value in the (nM , M )
parameter plane, so each circle corresponds to one of the square
regions from (a). A larger media impact is positively correlated with a
longer time to convergence. In both panels, we run our simulations on
a directed ER network with N = 100 nonmedia accounts that follow
an expected mean of k = 25 nonmedia accounts.

ideology in its content updating rule. (This is reminiscent
of self-appraisal in DeGroot models [31,49].) One way to
incorporate such a weighting, with which an account can value
its current ideology more than those of the accounts that it
follows, is to include a parameter w ∈ R�0 into the update
rule in Eq. (2). The content updating rule with self-weight w is

xt+1
i = 1

|Ii| + w

⎛
⎝wxt

i +
N+M∑
j=1

Ai jxt
j f

(
xt

j, xt
i

)⎞⎠. (8)

We perform numerical experiments on directed ER networks
in which we increase the self-weight w such that nonmedia
nodes weight their current ideology 3, 5, and 10 times more

FIG. 11. An example in which our model exhibits multiple
timescales in a single simulation on the Reed College Facebook net-
work (which has N = 962 nonmedia nodes) with the same parameter
values (c = 0.5 and xM = 0.9) as in Fig. 3. In this simulation, M = 9
and nM = 225. In the top panel, we set the convergence tolerance
to TOL = 10−4; our simulation converges with this tolerance after
51 time steps. In the bottom panel, we show the same network with
the same initial data with the convergence tolerance set to TOL = 0.

For this convergence tolerance, the two large ideology groups with
positive ideologies eventually “collapse” on a long timescale to one
group with a single ideology, which is entrained to the media’s
ideology. This “collapse” takes over 2 × 104 time steps to occur; this
is several orders of magnitude longer than the dynamics in the top
panel.

than the ideologies of the accounts that they follow. We show
the results of these simulations in Fig. 9. In these examples,
we observe media impact that is qualitatively similar to our
observations without the parameter w.

Additionally, as suggested by the individual trials in Fig. 2,
we observe a relationship between media impact and time
to convergence. As we illustrate in Fig. 10, our simulations
indicate that a larger media impact is positively correlated
with a longer time to convergence.

C. Metastability and long-time dynamics

In Sec. IV B, we defined a numerical simulation to have
“converged” if |xt

i − xt−1
i | < TOL = 10−4 for all i. Given
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FIG. 12. We simulate our model on the Reed College Facebook network (which has N = 962 nonmedia nodes) with the same parameter
values (c = 0.5 and xM = 0.9) as in Fig. 3 for 500 trials for three levels of media impact: M = 0 and nM = 0 (yellow), M = 11 and nM = 225
(orange), and M = 21 and nM = 675 (blue). In the top row, we show the distributions of the mean ideology at convergence for convergence
tolerances of (left) 0 and (right) 10−4. In the bottom row, we show the distributions of the variance of the ideology at convergence for
convergence tolerances of (left) 0 and (right) 10−4. Our histograms have 20 bins. (In some cases, the bins are very thin.) We observe that
the qualitative behavior of the mean and variance of the ideologies is the same for different convergence tolerances.

this definition, an important question to ask is whether (1)
these “converged” values have truly reached a stationary state
or (2) our model will subsequently reach a consensus state
on extremely long timescales. To examine this question, we
run numerical simulations of our model with a convergence
tolerance of TOL = 0 and impose a bailout time of T =
250 000 time steps. If our simulations reach the bailout time,
we record the “converged” state as the state at the bailout time.
We perform these simulations on the Reed College Facebook
network (which has N = 962 nonmedia nodes) with the same
parameter values (c = 0.5 and xM = 0.9) as in Fig. 3 and
on directed ER networks with the same parameter values
(N = 100, k = 25, c = 0.5, and xM = 0.9) as in Fig. 5.

Although the apparent “convergence” of our simulations
does exhibit interesting dynamics at multiple timescales in
some trials (see Fig. 11), these cases are rare. The distributions
for the mean have the same form regardless of whether we
choose TOL = 10−4 or TOL = 0. The same is true for the
distributions of the variance. In Figs. 12 and 13, we show
histograms of the mean ideology and variance of the ideology
over 500 trials in the Reed College Facebook network (see
Fig. 12) and in directed ER networks (see Fig. 13). Both
figures illustrate that the qualitative dynamics are the same
for both tolerance levels. In yellow, we show the distributions
without media impact (M = 0 and nM = 0). In orange, we
show the distributions when there are a moderate number

of media accounts that each have a moderate number of
followers. In blue, we show the distributions when there are a
large number of media accounts that each have a large number
of followers. As in our simulations in Sec. IV B, the mean
ideologies have larger values in the presence of media nodes,
and perfect entrainment (for which the mean ideology is 0.9)
occurs primarily when there are a moderate number of media
accounts (e.g., M = 15 for the ER networks), rather than when
there are a larger number of media accounts (e.g., M = 30
for the ER networks). We supplement these observations by
examining the distributions of the variance in ideology. Small
variance in ideology corresponds to consensus states, and
we observe these states only when media influence is absent
(i.e., M = 0) or low or moderate (e.g., M = 15 for the ER
networks). In other words, high levels of media influence (e.g.,
M = 30 for the ER networks) do not result in ideological
consensus (including as a result of entrainment to the media
ideology), even at 0 tolerance.

In the present paper, we focus on dynamics on short
and medium timescales, as we believe that it is particularly
relevant to simulate the dynamics of content spread over the
course of a news cycle. However, the observed separation of
timescales in some trials of our numerical experiments may
have interesting implications for future studies on long-term
effects of media impact in online social networks.
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FIG. 13. We simulate our model for 500 trials, where we draw the network for each trial from a directed ER random-graph ensemble with
N = 100 nodes and an expected mean out-degree of k = 25 (as in Fig. 5). We take c = 0.5 and xM = 0.9, and we examine three levels of
media impact: M = 0 and nM = 0 (yellow), M = 15 and nM = 15 (orange), and M = 30 and nM = 30 (blue). In the top row, we show the
distributions of the mean ideology at convergence for convergence tolerances of 0 (left) and 10−4 (right). In the bottom row, we show the
distributions of the variance of the ideology at convergence for convergence tolerances of 0 (left) and 10−4 (right). Our histograms have 20
bins. For both tolerances, we observe that the mean ideology has the same qualitative behavior; the same is true of the variance of the ideology.

V. EXTENDING OUR MODEL TO TWO
IDEOLOGICAL DIMENSIONS

We now move beyond one ideological dimension and
examine our content-spreading model with two ideological
dimensions. Suppose that, at time t , each account has an
ideological position of xi ∈ [−1, 1] × [−1, 1]. We use the
�2 norm to calculate the distance dist(x j, xi ) = ‖x j − xi‖2 in
ideology between accounts i and j. Depending on context, this
two-dimensional ideology may represent two different aspects
of a political-bias spectrum (e.g., the first dimension may rep-
resent socially liberal versus socially conservative, whereas
the second may represent preferred economic policies that
very between socialism and capitalism), or it may represent
political bias on multiple issues (e.g., immigration reform and
gun control). Given our ideological space and choice of metric
on this space, we then write our model as in Eq. (2).

Simulations

We simulate our content-spreading model with two ideo-
logical dimensions using a straightforward generalization of
the simulations of our model with one ideological dimension.
We add media accounts with a given ideology xM and assign
their followers uniformly at random from the nonmedia ac-
counts. In our examples, we initialize nonmedia accounts with

ideological positions that we draw uniformly at random for
each trial. (Therefore, it is again true that there is no spatial
ordering of ideology in the network structure.)

In Fig. 14, we show a heat map of simulations of media
impact in our model with two ideological dimensions. We ob-
serve qualitatively similar results as in our simulations of our
content-spreading model with one-dimensional ideologies.
We again see that the largest media impact (i.e., entrainment)
does not occur for the largest numbers of media accounts
and followers per media account. Instead, the largest amount
of entrainment occurs when there are a moderate number of
media accounts, each of which has a moderate number of
followers.

VI. COMBINING MEDIA BIAS AND QUALITY

Thus far, we have used our content-spreading model to
study the effects of media ideology on content spreading in
social networks. We now introduce the primary novel compo-
nent of our work: incorporation of media content quality into
our spreading model. Bessi et al. [5] observed that individuals
are more likely to spread low-quality content if it confirms or
supports their existing biases, and we seek to incorporate such
behavior into our content-spreading model.
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FIG. 14. An example of a heat map of the media impact diag-
nostic R for our model with political positions with two ideological
dimensions. For this example, we simulate our model on directed ER
networks with N = 100 nonmedia accounts that follow an expected
mean of k = 25 nonmedia accounts. We obtain qualitatively similar
results as in our computations with one ideological dimension, but
the mean media impact is less pronounced in this case. Specifically,
the mean impact R is smaller when using two ideological dimen-
sions than what we observed previously when using one ideological
dimension for directed ER networks with the same parameter values.
The vertical axis is the number of media accounts (M), the horizontal
axis is the number of followers per media account (nM ), and the
colors represent the media impact diagnostic (R), which we average
over 200 trials. Dark red indicates the most media impact (i.e., the
largest values of R), and white indicates the least impact.

We again denote the state of account i by xi. In our
prior discussions, this state was a vector in d-dimensional
ideological space (with d = 1 and d = 2 in our simulations).
Now, however, we introduce an additional dimension into an
account’s current state to indicate the quality of its shared con-
tent; therefore, we now take xi ∈ [−1, 1]d × [0, 1]. We allow
content quality to lie on a continuous spectrum, with values
near xd+1,i = 0 representing propaganda and disinformation
(e.g., clickbait or so-called “fake news”) and values closer
to xd+1,i = 1 representing substantive, thorough, fact-based
material.

To focus our discussion, suppose that there is one ideolog-
ical dimension, so d =1 and xi = (x1,i, x2,i ) ∈ [−1, 1]×[0, 1].
As before, suppose that accounts adjust their ideological
views only when they are exposed to content that is within
a distance c of their current ideology (i.e., only when
dist(x1,i, x1, j ) < c). Additionally, we now suppose that ac-
counts also consider content quality when we determine their
receptiveness. Account i decides whether the content of ac-
count j is acceptable for spreading based on the distance
dist(x1,i, x1, j ) between their ideological positions. If this dis-
tance is very small (e.g., close to 0), this content supports
account i’s ideology, and i is more likely to spread it even
if it is not of high quality. However, if the distance in ideology
is larger (e.g., close to c), account i is more discerning and
tends to spread the content only when it is of sufficiently high
quality.

We quantify content discernment in the following way.
We calculate the minimum acceptable quality qi, j as a linear

function of distance in ideology between account i and ac-
count j. That is,

qi, j = 1

c
dist(x1,i, x1, j ) . (9)

With this functional form of qi, j , account i spreads content
that confirms its bias exactly regardless of quality, because
the minimum acceptable quality is 0. If the content has an
ideological position that equals the maximum receptiveness
distance c from account i’s ideological position, then account
i spreads the content only if it is of quality 1, the highest
possible quality.

The ideological-position updating rule with quality dis-
cernment is

xt+1
1,i = 1

|Ii| + 1

⎛
⎝xt

1,i +
N+M∑
j=1

Ai jx
t
1, jg

(
xt

i , xt
j

)
⎞
⎠, (10)

where

g
(
xt

i , xt
j

) =
{

1 , if x2, j > qi, j

0 , otherwise (11)

and

Ii = {
j ∈ {1, . . . , N + M}∣∣Ai j = 1; g(xi, x j ) = 1

}
. (12)

We take the metric to be the �2 norm dist(xi, x j ) = ‖x1,i −
x1, j‖2, so we are using the same ideology metric as in our
previous discussions. When a nonmedia node elects to spread
content, we also adjust the quality of the content that it spreads
with the update

xt+1
2,i = 1

|Ii| + 1

⎛
⎝xt

2,i +
N+M∑
j=1

Ai jx
t
2, jg

(
xt

i , xt
j

)
⎞
⎠, (13)

which, along with Eq. (10), implies that

xt+1
i = 1

|Ii| + 1

⎛
⎝xt

i +
N+M∑
j=1

Ai jxt
jg

(
xt

i , xt
j

)
⎞
⎠. (14)

VII. MEASURING IMPACT FROM MULTIPLE SOURCES:
MEDIA BIAS AND QUALITY

Earlier in our paper (see Sec. IV B), we studied the effect
of the numbers of media accounts and media followers per
media account when media content has one fixed ideology.
Our incorporation of content quality allows us to examine
an important question of societal interest in a simple but
plausible way: How do competing media accounts influence
the outcome of opinions or ideological positions in a social
network? This situation models a more realistic scenario of
the influence of disparate news media (with heterogeneous
political biases and content quality) in a social network.
We extend our media-entrainment summary diagnostic from
our model with one ideological dimension to measure the
impact of media accounts on the mean ideological position
at convergence when there are multiple media sources. In
this scenario, the quantity of interest is a function R(x) that
encodes the impact of each possible ideological position x.

To construct the function R(x), we first establish a baseline
function r0(x) that encodes the prevalence of each ideology
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(e) (f ) (g) (h)

(a) (b) (c) (d)

FIG. 15. Impact on the ideology x (which we take to be a scalar in this example) of nonmedia accounts in a network with media ideologies
that we draw from a probability distribution. In the top row [i.e., (a)–(d)], we show the media impact for M = 100 media accounts, where we
draw the ideological positions of each media account from the uniform distribution on [−1, 1]. We consider the following numbers of followers
per media account: (a) nM = 1 (blue), (b) nM = 25 (red), (c) nM = 50 (green), and (d) nM = 100 (pink). In the bottom row [i.e., (e)–(h)], we
show the media impact for M = 100 media accounts with ideological positions that we draw from a truncated Gaussian distribution on [−1, 1]
with (before truncation) mean 0 and standard deviation 0.5. We again consider the following numbers of followers per media account: (e)
nM = 1 (blue), (f) nM = 25 (red), (g) nM = 50 (green), and (h) nM = 100 (pink). Both sets of simulations are on directed ER networks with
N = 100 nonmedia accounts. We average each media impact function R(x) over 200 trials. We indicate the standard deviations with the shaded
regions. The dashed line at R(x) = 0 represents no media impact. Values of R(x) that lie below this line indicate that the media has decreased
the prevalence of nonmedia accounts with ideology x in comparison to what occurs in the absence of media; values of R above this line indicate
that the media accounts have increased the prevalence of nonmedia accounts with ideology x.

for a given network in the absence of media accounts. Ideally,
it may be desirable to take r0(x) to be the probability that
an account prefers content with ideological position x. In
practice, we construct a function r0(x) by binning the ideol-
ogy of the content for each trial into bins of width δx. We
then count the number of times that there is content in the
ideology interval [x, x + δx], and we calculate a normalized
histogram. Once we have constructed the baseline function
r0(x), we use our previous strategy (see Sec. IV B) to construct
a function ri(x) that measures the prevalence of each ideology
in a network in the presence of media accounts. That is,
ri(x) is the distribution that describes the probability that a
nonmedia account has ideological position x when there are
media accounts in the network. We then use these functions
to construct the media impact function R(x) = ri(x) − rb(x).
Positive values of R(x) for ideology x indicate that the media
has enhanced the prevalence of content with this ideology in a
network, negative values indicate that the media has decreased
the prevalence of content with this ideology in a network, and
0 indicates no change.

In our model, it is interesting to consider a variety of
distributions of media ideologies. For example, we can draw
these opinions from a convenient synthetic probability distri-
bution, or we can determine them from empirical data. First,
using one ideological dimension, we consider two examples
in which we draw media ideologies from synthetic probability
distributions. In Fig. 15, we show the media impact functions
when there are M = 100 media accounts with ideologies that

FIG. 16. Distribution of media accounts in (ideology, quality)
space. We include M = 103 media accounts, whose positions in the
space are hand-curated and available from the Ad Fontes Media
Bias Chart [53]. Each colored dot represents one media account.
The horizontal coordinate represents the ideological position of an
account’s political content, and the vertical coordinate represents
the quality of its political content. The size of a dot represents the
number of followers of the associated Twitter account. The five
labeled accounts are the ones that are followed by at least 25% of
the nonmedia accounts in our numerical experiments.
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FIG. 17. Snapshots of temporal evolution of content ideology and quality in the Reed College network with M = 103 media accounts over
122 time steps. We draw media ideologies and qualities from Version 4.0 of the Ad Fontes Media Bias Chart [53]. We choose the number of
followers per media account to be proportional to the approximate number of followers that each media source had on Twitter on 15 February
2019 at 17:36 Pacific Standard Time (under the constraint that each media source in the model has at least one follower, so we round up to one
follower for some accounts). Each dot in the figure represents a nonmedia account. The horizontal coordinate represents the ideological bias of
each account’s content at time t , and the vertical coordinate represents its content quality at time t . To aid visualization, the colors also signify
ideological position. (The bluest color is the most liberal, and the reddest color is the most conservative.) We represent follower relationships
as lines between the dots. This network architecture does not change over time, although the content that is spread by the nonmedia accounts
does change over time. Because the ideology and quality of the content from the media accounts do not change, we do not show these nodes.

we draw (1) from a uniform distribution on [−1, 1] and (2)
from a truncated Gaussian distribution on [−1, 1] with (before
truncation) mean 0 and standard deviation 0.5. For each of
these two examples, we examine the dependence of the media
impact function on the number nM of followers per media
account.

We also showcase our model using a media distribution
that we generate from hand-curated empirical observations
of real-world media sources that incorporate both political
ideology (in one dimension) and content quality (in the other
dimension). This example includes M = 103 media accounts
with ideological biases and qualities from Version 4.0 of the
hand-curated Ad Fontes Media Bias Chart [53]. We rescale the
ideology and quality chart coordinates so that they lie within
the intervals [−1, 1] and [0, 1], respectively. In Fig. 16, we
show these media content coordinates. These coordinates pro-
vide an illustrative example of a possible input to our model;
one should not necessarily construe them as quantitatively
representing the “true” ideologies of the depicted sources. An
important extension of our work is developing quantitative
techniques (e.g., using sentiment analysis) to analyze bias and
quality of content sources from real data. This is a difficult
and interesting problem, and we leave it as future work.

In Fig. 17, we show the temporal evolution of one trial
of our content-quality spreading model on the Reed College
network with media account ideologies and qualities from the

Media Bias Chart. We set each media account j to have a
number nM, j of followers that is proportional to its number
of followers on Twitter on 15 February 2019 at 17:36 Pacific
Standard Time (under the constraint that each media source
in the model has at least one follower, so we round up to
one follower for some accounts). We select followers for each
media account by selecting the nonmedia accounts whose
initial conditions are closest in ideological position to that
of the media account. That is, for each media account j
(with j ∈ {1, . . . , M}) and each nonmedia account i (with
i ∈ {1, . . . , N}), we calculate the distance dist(x0

1,i, x1,Mj ) in
ideological position for all i at t = 0. From this set of all
distances in ideological position from media account j, we
select the nMj smallest distances; these nonmedia accounts are
the followers of media account j. In the simulations for which
we use this media distribution as an input, we observe the
emergence of two primary communities (“echo chambers”)
of content: one in which the content is ideologically moderate
and of fairly high quality (specifically, it has an ideology of
about 0 and a quality of about 0.75) and one in which the
opinion is more conservative but of lower quality (specifically,
it has an ideology of about 0.5 and a quality of about 0.4). See
the contour plot in Fig. 18. The polarization that results from
simulations of our model is a reflection of the polarization
in the ideology and quality of the media distribution. In
our simulations, the account for Fox News (which has an
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FIG. 18. Contour plot of the media impact function R(x) for
ideology and quality in the Reed College Facebook network with
M = 103 media accounts, where we draw media biases and qualities
from Version 4.0 of the Ad Fontes Media Bias Chart [53] (as in
Fig. 17). The impact function R(x) illustrates the relative influence
of the media accounts on the mean ideology and quality of content
in the network. When R < 0 (in blue), the media has decreased the
prevalence of content with the (ideology, quality) pair (x1, x2) in
comparison to the content in the absence of media; when R > 0 (in
pink), the media has increased the prevalence of content with the
(ideology, quality) pair (x1, x2).

ideological position of 0.613636 and a quality of 0.3125 in
the Media Bias Chart and is followed by about 28% of the
nonmedia accounts) is very popular and near the final location
of the conservative community in (ideology, quality) space.

VIII. CONCLUSIONS AND DISCUSSION

We introduced a model for the spread of content in an
online social network, with both media and nonmedia nodes,
that accounts for the effects of both ideology and content
quality on the spreading dynamics. We based the spreading
dynamics of our model on a bounded-confidence mechanism,
such that accounts spread content that is sufficiently close to
their current ideological position. In the most sophisticated
version of our model, the quality of content determines how
close an account’s ideological position should be to the con-
tent’s ideological position for the account to share the content.
Therefore, low-quality content is shared only when it supports
an account’s existing ideological biases. As far as we are
aware, our model is the first mathematical model to explicitly
incorporate the effects of media quality on spreading dynam-
ics. This is a key novelty of our work.

We conducted simulations for our content-spreading model
for media content with both one and two ideological dimen-
sions. Using results from our simulations, we quantified the
level of media “entrainment” (i.e., how much the media affects
the ideological positions of nonmedia accounts) for a variety
of network architectures. We examined how the amount of
media entrainment of the nonmedia accounts in a network
depends on the numbers of media accounts and on the number
of followers per media account in that network. We found

that media impact increases when one increases the number of
nonmedia accounts, the expected mean number of nonmedia
accounts that such an account follows, or the receptiveness
of such an account. We also observed an interesting rela-
tionship between media entrainment and convergence time
in our model, with higher levels of media entrainment cor-
relating positively with longer convergence times. Finally, we
simulated a version of our model that accounts for content
quality in the spreading dynamics. Using a hand-curated set
of media inputs from real media outlets and their numbers
of followers on Twitter, we demonstrated that this version
of our model produces polarization in both ideology and
quality of content. Specifically, it yields a community of
high-quality content in the center of the political spectrum
and a conservative community of low-quality content. Our
model provides a useful step towards increasing understand-
ing of how media content quality affects the spread of online
content.

Our model is a simplistic model for the spread of media
content in online social networks. This is a complex system,
and naturally it is not appropriate to view our model as a per-
fectly accurate mathematical description of such phenomena.
Instead, our model provides a starting point for exploring the
mechanisms that contribute to content spreading dynamics
and echo chambers. There are many worthwhile ways to
generalize our model. For example, our assumption that ac-
counts choose whether to spread content based on a universal
confidence parameter c is a naive simplification, as is the
homogeneity of nonmedia accounts in general. Spreading
behavior surely depends on individual characteristics, as has
been explored in models that include zealots [54] and in other
models of social dynamics [24,55,56]. Augmenting our model
of content spreading by incorporating account heterogeneity
is important future work. In such efforts, we expect that it will
be insightful to explore the effects of structural homophily
(for example, as was explored using the DeGroot model in
[57]). Individuals in social networks are free to choose which
accounts to follow (and which accounts to stop following
or never follow), and such choices are sometimes driven by
the desire to follow accounts that have similar ideologies
[4,5]. This can increase structural homophily and exagger-
ate echo chambers in networks [22,58], because edges are
more likely to arise (and persist) between nodes with similar
ideologies.

There are also other interesting avenues for extending our
work. For example, when modeling content with multiple
ideological dimensions, one can give different weights to
different dimensions. One can also incorporate spreading
through multiple types of social media by generalizing our
model to multilayer networks [59] or develop models of media
influence that go beyond pairwise interactions by generalizing
it to hypergraphs or simplicial complexes [60]. It will also
be interesting to extend recent work on bounded-confidence
opinion dynamics that coevolve with network structure [61]
to include the effects of media. It is also important to explore
the influence of time-dependence in network architecture [62]
on the dynamics of our content updating rule, as accounts
can follow new accounts and unfollow accounts. One way to
explore such phenomena is to incorporate network rewiring,
as in adaptive voter models [63].
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A key strength of our model is its flexibility, as one can
formulate generalizations of it (such as ones that we just
discussed) in a straightforward way. Furthermore, one can
already readily use our model to study many interesting phe-
nomena. For example, although we only examined a few case
studies of media probability distributions in the present paper,
one can draw the number of media accounts, the number
of followers per account, and the ideologies and qualities
of media content from any probability distribution—either
synthetic ones or ones that are inferred from empirical data—
and it is important to explore these ideas in future work. It is
particularly desirable for media nodes in a content-spreading
model to produce content that follows some distribution of
ideologies and qualities, rather than always using the same
parameter values for such features. It will also be very in-
teresting to include media nodes with ideologies xM that are
inferred from data, such as through sentiment analysis of
news stories on a given topic (as described in Ref. [19] and
references therein). Using procedures such as topic modeling
and sentiment analysis can generate a probability distribution
of media accounts in ideological space as an output, which
can then be fed into our model. There has been some recent
progress in this direction. For example, Ye and Skiena [64]
measured media bias and quality from the web pages and
tweets of media sources, and Albanese et al. [65] created a
two-dimensional model based on semantic analysis to quan-
tify media influence on voting. Another important issue is the
examination of transient dynamics of content spreading, as

it is necessary to go beyond our focus on the properties of
ideological positions after long times or at convergence.

Developing mathematical approaches for analyzing and
quantifying the dynamics of content spreading has ramifica-
tions for how to mitigate the spread of undesired content and
promote the spread of desired content in social media. One
potential impact is the development of control strategies and
“fake-news filters” (e.g., by flagging content that is below
some threshold value on the quality axis in a model like ours)
that are reminiscent of spam filters. Our work provides a step
toward the development of novel algorithms to encourage se-
lective spreading of high-quality or desirable content. Another
area for which further development of such models may also
be fruitful is in bot detection, where most existing algorithms
rely on network measures, followership data, activity rates,
or linguistic cues [7] (all of which are straightforward to
manipulate by malicious actors), rather than using spreading
dynamics. Advances in these modeling efforts will also yield
insights into the theory of online content spread and help
bridge the gap between simple spreading models and realistic
investigations of spreading on social media.

ACKNOWLEDGMENTS

MAP was supported by the National Science Foundation
(Grant No. 1922952) through the Algorithms for Threat De-
tection (ATD) program. We thank Franca Hoffmann, Alex
Pan, and two anonymous referees for their helpful comments.

[1] Pew Research Center, News use across social media platforms
2018 (2018), available at http://www.journalism.org/2018/09/
10/news-use-across-social-media-platforms-2018/.

[2] A. Bessi and E. Ferrara, Social bots distort the 2016 U.S.
presidential election online discussion, First Monday 21 (2016).

[3] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. Kramer, C. Marlow,
J. E. Settle, and J. H. Fowler, A 61-million-person experiment
in social influence and political mobilization, Nature (London)
489, 295 (2012).

[4] E. Bakshy, S. Messing, and L. A. Adamic, Exposure to ideo-
logically diverse news and opinion on Facebook, Science 348,
1130 (2015).

[5] A. Bessi, G. Caldarelli, M. Del Vicario, A. Scala, and W.
Quattrociocchi, Social determinants of content selection in the
age of (mis)information, in International Conference on Social
Informatics, SocInfo 2014 (Springer International Publishing,
Cham, Switzerland, 2014), pp. 259–268.

[6] M. Cinelli, E. Brugnoli, A. L. Schmidt, F. Zollo, W.
Quattrociocchi, and A. Scala, Selective exposure shapes the
Facebook news diet, arXiv:1903.00699 (2019).

[7] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini,
The rise of social bots, Commun. ACM 59, 96 (2016).

[8] K. T. Poole, Spatial Models of Parliamentary Voting (Cambridge
University Press, Cambridge, UK, 2005).

[9] K. T. Poole and H. L. Rosenthal, Ideology and Congress (Trans-
action Publishers, Piscataway, NJ, 2007).

[10] J. Lewis, K. Poole, H. Rosenthal, A. Boche, A. Rudkin, and
L. Sonnet, Voteview: Congressional roll-call votes database
(2019), available at http://voteview.com.

[11] L. Sirovich, A pattern analysis of the second Rehnquist
U.S. Supreme Court, Proc. Natl. Acad. Sci. USA 100, 7432
(2003).

[12] M. A. Porter, P. J. Mucha, M. E. J. Newman, and C. M.
Warmbrand, A network analysis of committees in the U.S.
House of Representatives, Proc. Natl. Acad. Sci. USA 102,
7057 (2005).

[13] S. Vosoughi, D. Roy, and S. Aral, The spread of true and false
news online, Science 359, 1146 (2018).

[14] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, Information
diffusion in online social networks: A survey, ACM Sigmod
Record 42, 17 (2013).

[15] F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan,
Epidemiological modeling of news and rumors on Twitter, in
Proceedings of the 7th Workshop on Social Network Mining and
Analysis, SNAKDD ’13 (Association for Computing Machin-
ery, New York, NY, USA, 2013), Article No. 8.

[16] Q. Liu, T. Li, and M. Sun, The analysis of an SEIR rumor
propagation model on heterogeneous network, Physica A 469,
372 (2017).

[17] J. Wang, L. Zhao, and R. Huang, SIRaRu rumor spread-
ing model in complex networks, Physica A 398, 43
(2014).

[18] L. Zhao, H. Cui, X. Qiu, X. Wang, and J. Wang, SIR rumor
spreading model in the new media age, Physica A 392, 995
(2013).

[19] B. Batrinca and P. C. Treleaven, Social media analytics: A
survey of techniques, tools and platforms, AI & Society 30, 89
(2015).

023041-18

http://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/
https://doi.org/10.5210/fm.v21i11.7090
https://doi.org/10.5210/fm.v21i11.7090
https://doi.org/10.5210/fm.v21i11.7090
https://doi.org/10.1038/nature11421
https://doi.org/10.1038/nature11421
https://doi.org/10.1038/nature11421
https://doi.org/10.1038/nature11421
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1126/science.aaa1160
http://arxiv.org/abs/arXiv:1903.00699
https://doi.org/10.1145/2818717
https://doi.org/10.1145/2818717
https://doi.org/10.1145/2818717
https://doi.org/10.1145/2818717
http://voteview.com
https://doi.org/10.1073/pnas.1132164100
https://doi.org/10.1073/pnas.1132164100
https://doi.org/10.1073/pnas.1132164100
https://doi.org/10.1073/pnas.1132164100
https://doi.org/10.1073/pnas.0500191102
https://doi.org/10.1073/pnas.0500191102
https://doi.org/10.1073/pnas.0500191102
https://doi.org/10.1073/pnas.0500191102
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1145/2503792.2503797
https://doi.org/10.1145/2503792.2503797
https://doi.org/10.1145/2503792.2503797
https://doi.org/10.1145/2503792.2503797
https://doi.org/10.1016/j.physa.2016.11.067
https://doi.org/10.1016/j.physa.2016.11.067
https://doi.org/10.1016/j.physa.2016.11.067
https://doi.org/10.1016/j.physa.2016.11.067
https://doi.org/10.1016/j.physa.2013.12.004
https://doi.org/10.1016/j.physa.2013.12.004
https://doi.org/10.1016/j.physa.2013.12.004
https://doi.org/10.1016/j.physa.2013.12.004
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1007/s00146-014-0549-4
https://doi.org/10.1007/s00146-014-0549-4
https://doi.org/10.1007/s00146-014-0549-4
https://doi.org/10.1007/s00146-014-0549-4


A MODEL FOR THE INFLUENCE OF MEDIA ON THE … PHYSICAL REVIEW RESEARCH 2, 023041 (2020)

[20] C. R. Sunstein, Republic.com 2.0 (Princeton University Press,
Princeton, NJ, 2009).

[21] S. Flaxman, S. Goel, and J. M. Rao, Filter bubbles, echo
chambers, and online news consumption, Public Opin. Q. 80,
298 (2016).

[22] M. Del Vicario, G. Vivaldo, A. Bessi, F. Zollo, A. Scala, G.
Caldarelli, and W. Quattrociocchi, Echo chambers: Emotional
contagion and group polarization on Facebook, Sci. Rep. 6,
37825 (2016).

[23] W. Cota, S. C. Ferreira, R. Pastor-Satorras, and M. Starnini,
Quantifying echo chamber effects in information spreading
over political communication networks, EPJ Data Sci. 8, 35
(2019).

[24] Complex Spreading Phenomena in Social Systems: Influence
and Contagion in Real-World Social Networks, edited by S.
Lehmann and Y.-Y. Ahn (Springer International Publishing,
Cham, Switzerland, 2018).

[25] J. D. O’Brien, I. K. Dassios, and J. P. Gleeson, Spreading
of memes on multiplex networks, New J. Phys. 21, 025001
(2019).

[26] F. Baumann, P. Lorenz-Spreen, I. M. Sokolov, and M. Starnini,
Modeling Echo Chambers and Polarization Dynamics in Social
Networks, Phys. Rev. Lett. 124, 048301 (2020).

[27] U. Chitra and C. Musco, Understanding filter bubbles and
polarization in social networks, WISDOM ’19 (KDD 2019,
August 5th, Anchorage, AK, USA), arXiv:1906.08772.

[28] H. A. Prasetya and T. Murata, Modeling the co-evolving po-
larization of opinion and news propagation structure in social
media, in International Workshop on Complex Networks and
their Applications (Springer International Publishing, Cham,
Switzerland, 2018), pp. 314–326.

[29] A. C. R. Martins, Mobility and social network effects on
extremist opinions, Phys. Rev. E 78, 036104 (2008).

[30] Y.-l. Chuang and M. R. D’Orsogna, Mathematical models of
radicalization and terrorism, arXiv:1903.08485.

[31] H. Noorazar, K. R. Vixie, A. Talebanpour, and Y. Hu, From
classical to modern opinion dynamics, arXiv:1909.12089.

[32] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, Mixing
beliefs among interacting agents, Adv. Complex Syst. 3, 87
(2000).

[33] R. Hegselmann and U. Krause, Opinion dynamics and bounded
confidence: Models, analysis, and simulation, J. Artif. Soc. Soc.
Simul. 5, 3 (2002).

[34] D. Bhat and S. Redner, Opinion formation under antagonistic
influences, Phys. Rev. E 100, 050301 (2019).

[35] D. Bhat and S. Redner, Polarization and consensus by opposing
external sources, J. Stat. Mech. (2020) 013402.

[36] M. Mobilia, A. Petersen, and S. Redner, On the role of zealotry
in the voter model, J. Stat. Mech. (2007) P08029.
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