
MuddSub Page 1 of 7

Design Philosophy-Driven Development of
Autonomous Underwater Vehicle Alfie

Seth Isaacson, Daniel Yang, Ginger Schmidt, Kyle Rong, Diana Lin, Omari Matthews
Harvey Mudd College
Claremont, CA, USA

Abstract—This paper discusses the development
of MuddSub’s autonomous underwater vehicle, Alfie.
We will compete at the 2019 International Robosub
Competition. As MuddSub is a new organization,
Alfie was not designed to be a robot with state-of-
the-art, groundbreaking functionality. Instead, Alfie’s
main innovation is in its unique design philosophy:
Simplicity, Stability, and Scalability. The principles
of our design philosophy are intended to reflect the
limitations that new teams face when competing at
RoboSub for the first time. The design philosophy
is a top-level, governing principle which dictates
our competition strategy, and in turn influences our
vehicle design.

By introducing this philosophy in our first year of
competition, we hope to contribute to the underwater
robotics community in two ways. Firstly, we wish to
influence pre-existing teams by demonstrating how
adhering to a strict set of goals allows for a effective
competition strategy and creative systems engineer-
ing, while minimizing over-engineering. Secondly, as
Robosub is a ever-increasing community, we believe
Alfie will be a model of an efficient and effective way
to compete in a team’s first year. Finally, we hope
to encourage growth in the RoboSub community,
and pave the way for novel, impactful research in
autonomous underwater vehicles.

I. DESIGN PHILOSOPHY

The conception, design, and manufacture of
Alfie was guided by three interconnected princi-
ples. These three principles, in decreasing order
of priority, are as follows:

A. Simplicity

We define simplicity as avoiding superfluous
complexity. In practice, simplicity embodies
the restrictions inherent to being a new team.

Fig. 1. From competition strategy to implementation, Alfie is
developed on our design philosophy.

These restrictions include development time,
human resources, and monetary resources. In
terms of development time, all members of
MuddSub are full-time students at a rigorous
institution, and over the summer we are all
balancing this project with full-time research
positions. In total, Alfie was developed by six
people, including three who worked over the
summer. In terms of monetary resources, the
team had a total of $ 10,000 dollars for the
project, of which $6,000 were spent on com-
ponents on the final iteration of the robot.

Our sensors are thus limited to an Inertial
Measurement Unit (IMU), a depth sensor, and
cameras. This means Alfie will not have DVL
values for accurate localization, and rely only
on cameras for obstacle localization. However,
many tasks of Robosub can be completed with

MuddSub Page 2 of 7

only these sensors, and the DVL is sometimes
excessive to achieve reliable results in vision-
based tasks. Through simplicity, we maximize
our underwater autonomous capability despite
the limitations we faced.

B. Stability

We define stability as designing for minimal
change to Alfie’s core systems. Stability further
serves as our measure of reliability. To exercise
our desire for stability, we are prioritizing con-
cepts in a greedy strategy: rather than focusing
our efforts on accomplishing many of the com-
plex tasks, we only work on tasks we believe
are achievable for the next competition. By
doing so, our team can maximize our potential
for success in this year, while also laying the
foundation for success in future years. In order
to achieve stability, we need to prioritize design
decisions which would work consistently this
year and would require minimal modifications
to the robot in the future. Stability is connected
to simplicity as robots with high simplicity tend
to be stable.

C. Scalability

We define scalability as the possibility of fu-
ture expansion. Scalability is inherently linked
to stability. In further years, we would like to
incrementally modify Alfie without complete
redesign. There is an inherent relationship be-
tween scalability and stability because reducing
the changes made to existing systems will
allocate/divert more time and resources to new
systems.

II. COMPETITION STRATEGY

Our competition strategy follows directly
from the design philosophy.

A. Task Selection

In order to adhere the tenets of our design
philosophy, Alfie will only attempt vision-based
tasks. While it is tempting to incorporate a
sonar system, which has a significant point
value, we decided this would fundamentally
undermine the simplicity of the robot. A sonar

system introduces a level of complexity that
compromises the success of the vision-based
tasks given our new-team restrictions. For a
rookie team, distributing resources across a
variety of tasks decreases the likelihood of
success on each individual task.

B. Competition Route

Leveraging our vision-based system, we will
prioritize passing through the gate and ‘vampire
slaying’ (the buoy task) in our competition
route. Time permitting, we may also attempt
to compete garlic drop (the bins task) to the
best of our ability. First, we will determine the
departure direction of Alfie based on a random
coin toss. From the dock, we will attempt to
search for the gate through vision code. When
Alfie is confident enough that it found the gate,
it will move closer towards it. Once close to
the gate, Alfie will identify the smaller section
of the gate, and pass through the gate while
attempting revolutions for style. Next, Alfie
will attempt to head toward one of the targets
at slay vampires, completing our competition
route. From there, attempting the bins task is
considered a stretch goal.

C. Task Development

To maximize stability, we focused on thor-
oughly addressing a limited number of tasks
rather than attempting every task we are theo-
retically capable of. Thus, we spent sufficient
time developing each task before beginning
work on future, more challenging tasks. For ex-
ample, while many teams ded-reckon through
the gate, we spent several months developing
a reliable vision system for the gate before
moving on to the path markers and buoys.

In the current state of the robot, we are
confident in our ability to accomplish the gate
task. We are now incrementally developing the
buoys task and, only once confident in our
ability to complete buoys, we may begin work
on the bins.

MuddSub Page 3 of 7

III. VEHICLE DESIGN

Alfie’s design was determined by our com-
petition strategy, and thus, adheres to the three
cornerstones of our design philosophy. We de-
cided to split Alfie’s design into the three tradi-
tional subcategories: mechanical, electrical, and
software.

A. Mechanical Systems

The mechanical systems comprise an en-
closure which houses all electronics, and a
base plate which mounts the enclosure and all
other hardware. In accordance with our design
philosophy, the main priorities in design of the
mechanical systems were simplicity and acces-
sibility of the internal components. Thus, all
components are mounted in a single rectangular
enclosure, sealed by one large o-ring seal.

Our design made the robot simple to man-
ufacture and assemble. Symmetry in design
also decreased overall unique custom parts
count, which made the build process much
more efficient. All machining operations were
completed in-house by team members, with the
exception of the initial waterjet cut (performed
by the shop manager on campus) and the weld-
ing (outsourced to a professional). The total
cost of the frame, enclosure, and out-sourced
welding was under $1500, a fraction of what
we know comparable robots to cost.

B. Electrical Systems

The electrical systems are built entirely of
off-the-shelf components. The hardware is able
to support vision-based tasks. The electronics
are centered around an Nvidia Jetson TX2
comptuter. A Vectornav VN-100 IMU provides
inertial data, while a pair of Blackfly cameras
with Theia wide-angle lenses supply images.

1) Power System: Alfie’s power system
presents a novel solution to a common problem
in compact systems which handle relatively
large amounts of power. Because of the pres-
ence of 8 thrusters - which are large, inductive
loads - any power lines are likely to become
extremely noisy. This can damage the sensitive

Fig. 2. Alfie’s electronics infrastructure includes two opto-
isolated circuits to prevent damage of sensitive electronics

electronics in the enclosure. To address this,
Alfie has two isolated circuits. One is dedicated
to the thrusters, while the other manages the
computer and auxiliary components. The com-
puter communicates with the thrusters’ speed
controllers through an opto-isolated i2c line.

Fig. 3. Alfie’s software stack is split to localization and a
ROS-based backend which handles communication and task
execution.

C. Software

1) Backend: Alfie’s software stack is built
around ROS. The backend is designed to be
as user-friendly as possible, providing a range
of QT-based utilities for interfacing with the
code. In the spirit of simplicity and stability, the
back-end controls were left extremely standard.
We run 6-axis PID control; however, due to
the physical stability of the robot we do not

MuddSub Page 4 of 7

anticipate needing the pitch or roll control
loops. State queuing and execution is handled
by the ROS SMACH library, a powerful and
well-documented tool for creating hirearchical
state machines.

Fig. 4. These are the image pre-processing steps that demon-
strate how traditional computer vision tools can accentuate a
gate that even the human eye has difficulty recognizing.

2) Image Pre-processing: After the ad-
vancement of machine learning object detec-
tion such as the popular YOLO, the preva-
lent vision strategy has been to simply pass a
given image into a network, and receive back
a bounding box of the feature [1]. Although
object detection networks are powerful, some
of the functionality it provides is overkill for
RoboSub, and sometimes, better results can
still be achieved with more traditional methods.
For instance, consider the detection of a gate:
given that the depth of the gate is constant,
identification of the gate relies only on detec-
tion of the x-coordinates of each leg.

For this reason, we decided to attempt an
OpenCV-based gate detection. Our algorithm
increases the contrast of wanted features, filters
out noise, then runs a binarization to detect
the features. To achieve these tasks, we first
convert the image into the YUV color space,
where Y is the luma (brightness) component,
and U and V are the cool color and warm color
components respectively. Since the background
of an underwater image is generally blue and
the gate is generally yellow, we enhance the
contrast in the warm color space by linearly

scaling the pixel values, and remove the cool
color space. After this, we apply additional
noise treatment and binarization, and localize
the gate by finding the location for the peaks
of sums of pixel values columns. To correct for
gate legs positioned at an angle, our code ex-
periments with the binarization under different
rotations and reports the localization results of
the most probable rotation.

The traditional computer vision-based ap-
proach provides several benefits over neural
networks. Firstly, the computer-vision based
code runs in less than 0.1 seconds; even if
the detection is not perfect, statistical methods
can then figure out the true location of the
gate. Secondly, and more importantly, object
detection networks need a substantial train-
ing data set. These images are not readily
available in bulk for new teams, despite the
best intentions of participating teams. Further-
more, the lighting conditions and environment
of TRANSDEC is considerable different than
that of a recreational swimming pool. Apart
from on-site training, the neural network will
likely perform poorly compared to OpenCV-
based code. To demonstrate the significance
of the lack of training images, a benchmark
between YOLO and OpenCV is included in the
experimental results section. The last benefit is
the reuseability of the code. Since most of the
OpenCV code is designed to clarify features
of images, much of the preprocessing can be
reused for detection of other obstacles, such as
the bins or buoy tasks. Finally if in the future
we determine a machine learning application
to be more applicable to certain tasks, the
preprocessing will still increase the success rate
of the object detection.

IV. EXPERIMENTAL RESULTS

A. Watertight Testing

To verify our mechanical systems, we com-
pleted a series of water tightness tests with
Alfie. We first used our vacuum pump to deter-
mine if the enclosure was airtight. After fixing
a few minor issues, we proceeded to complete

MuddSub Page 5 of 7

underwater tests. For each trial, we placed the
water in the robot, weighed it down such that
it sank to the bottom of the pool, and retrieved
it after one hour. In general, we found three
sources of leaks. The first was leaks caused
by our Blue Robotics hull perpetrators, which
we discovered needed to be extremely tight
to function properly. The second was a faulty
weld which had a thin pore through which
water dripped. We repaired this issue with
marine epoxy. Thirdly, our primary o-ring seal
was slightly unreliable. We fixed that by using
a slightly larger diameter o-ring. Since making
those three adjustments, we’ve experienced no
leaks in over twenty hours of testing.

B. Vision Benchmark
To verify our theory that OpenCV outper-

forms neural network such as YOLO given
limited training images in objection localiza-
tion, we trained and tested OpenCV and YOLO
codes with 83 images from past competitions.
We use only competition images, because we
want to have object detection codes usable
during competitions. In particular, including
non-competition images will not promote the
functionality of the neural net, because neu-
ral networks typically require more than 2000
images to be fully flexible and functional. Us-
ing the 83 competition images we obtained,
we randomly choose 54 of them as training
data and 29 of them as testing data. Our test
focuses the accuracy of the code in detecting
the x-coordinate of the leg of the gate. For
a 640 by 640 images, we consider an error
of 30 pixels acceptable. Using this standard,
we find that the f-measure (f-score) is 0.88
for OpenCV localization and 0.58 for YOLO
trained on 100 epochs. Moreover, while YOLO
on average takes 0.46 seconds, OpenCV-based
detection only needs 0.2 seconds on average to
generate a prediction. The reason for the less
ideal performance of YOLO code is that YOLO
inherently requires more training images than
we currently possess. We believe with more
images, YOLO can improve its performance
substantially and this will be our goal next year.

Fig. 5. MuddSub Team Members, 2019

ACKNOWLEDGEMENTS

MuddSub would like to thank all the indi-
viduals who helped make our work on Alfie
within a single year possible. We would like
to thank Harvey Mudd College’s Shannahan
Fund, which served as our primary source of
money. We would also like to thank the Har-
vey Mudd College Department of Computer
Science for providing a workspace and access
to the underwater robotics testing laboratory.
This work would not be possible without our
advisor Zachary Dodds. Furthermore, machine
shop manager Paul Stovall provided extremely
valuable advice and assistance relating all ma-
chining tasks. We are grateful for our corporate
sponsor Connect Tech Inc. for providing us
with a Jetson TX2 carrier board which dras-
tically reduced the footprint of our computer.
We would also like to acknowledge Theia
Technologies for providing us with high quality
camera lenses. Finally, we wish to thank Vec-
torNav for providing our team with an IMU.

REFERENCES

[1] Redmon, Joseph, and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767 (2018).

MuddSub Page 6 of 7

APPENDIX A: EXPECTATIONS

Subjective Measures
Maximum Points Expected Points Points Scored

Utility of team website 50 40
Technical Merit (from journal paper) 150 150
Written Style (from journal paper) 50 50

Capability for Autonomous Behavior (static judging) 100 100
Creativity in System Design (static judging) 100 100

Team Uniform (static judging) 10 10
Team Video 50 40

Pre-Qualifying Video 100 100
Discretionary points (static judging) 40 40

Total 650 630

Performance Mmeasures
Maximum Points

Weight See Table 1/Vehicle 80
Marker/Torpedo over weight or size by <10% minus 500/marker

Gate: Pass through 100 100
Gate: Maintain fixed heading 150 150

Gate: Coin Flip 300 300
Gate: Pass through 60% section 200
Gate: Pass through 40% section 400 400

Gate: Style +100 (8x max) 800
Collect Pickup: Crucifix, Garlic 400/ object

Follow the "Path" (2 total) 100/segment
Slay Vampires: Any, Called 300, 600 600
Drop Garlic: Open, Closed 700, 1000 / marker (2+ pickup)

Drop Garlic: Move Arm 400
Stake through Heart: Open Oval, Cover Oval, Sm Heart 800, 1000, 1200 / torpedo (max 2)

Stake through Heart: Move lever 400
Stake through Heart: Bonus - Cover Oval, Sm Heart 500

Expose to Sunlight: Surface in Area 1000
Expose to Sunlight: Surface with object 400/object

Expose to Sunlight: Open coffin 400
Expose to Sunlight: Drop Pickup 200/ object (Crucifix only)

Random Pinger first task 500
Random Pinger second task 1500
Inter-vehicle Communication 1000

Finish the mission with T minutes (whole+factional) Tx100

MuddSub Page 7 of 7

APPENDIX B: COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost(if new)
Buoyancy Control
Frame
Waterproof Housing
Waterproof Connectors
Thrusters
Motor Control
High Level Control
Actuators
Propeller
Battery HobbyKing Turnigy Li-Po battery
Converter
Regulator
CPU NVIDIA Jetson
Internal Comm Network
External Comm Interface
Programming Language 1 Standard C++ Foundation C++14 Free
Programming Language 2 Python Software Foundation Python 3 Free
Compass
Inertial Measurement Unit VectorNav VN-100T Donated
Doppler Velocity Log n/a
Camera(s) FLIR FlyCapture
Hydrophones n/a
Manipulator n/a
Algorithm: vision OpenCV Python CV2 Free
Algorithm: acoustics n/a
Algorithm: localization and mapping Gaussian-based Localization
Algorithm: autonomy
Open source software Canonical Ltd. Ubuntu 16.04 Free
Team size 6 team members
HW/SW expertise ratio 1:1
Testing time: simulation 0
Testing time: in-water 15 hrs

