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In established theories of grain coarsening, grains disappear either by shrinking or by rotating
as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain
coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match
two adjacent grains’ orientations. We experimentally observe both conventional grain rotation and
grain splitting in 2D colloidal polycrystals. We find that grain splitting occurs via independently
rotating “granules” whose shapes are determined by the underlying triangular lattices of the two
merging crystal grains. These granules are so small that existing continuum theories of grain bound-
ary energy are inapplicable, so we introduce a hard sphere model for the free energy of a colloidal
polycrystal. We find that during splitting, the system overcomes a free energy barrier before ul-
timately reaching a lower free energy when splitting is complete. Using simulated splitting events
and a simple scaling prediction, we find that the barrier to grain splitting decreases as grain size
decreases. Consequently, grain splitting is likely to play an important role in polycrystals with
small grains. This discovery suggests that mesoscale models of grain coarsening may offer better
predictions in the nanocrystalline regime by including grain splitting.

I. INTRODUCTION

The growth and merging of grains in polycrystalline
materials, collectively called “grain coarsening,” plays a
critical role in determining material properties [1–7]. For
nearly a century, grain coarsening has been described by
continuum theories in which the energetic cost of dis-
ordered grain boundaries creates a surface tension that
drives grain boundary migration [8, 9]. More recently,
grain rotation has been postulated to play a significant
role [10–12], particularly in nanocrystalline materials,
where each grain contains only hundreds or thousands
of atoms [13–25]. Various causes for grain rotation have
been proposed, including shear coupling between neigh-
boring grains [26, 27], and a driving torque described by
the Read-Shockley equation for the free energetic cost of
a grain boundary [28–31]. Both classes of theories assume
that grains rotate as rigid objects.

Colloidal polycrystals offer the opportunity to directly
visualize grain coarsening at the particle scale. Previous
groups have reported grain rotation of colloidal crystal
grains that are only in contact with a single neighbor-
ing grain [32–34]. However, grain rotation in a colloidal
polycrystal, where multiple adjacent grains can generate
competing torques, has remained elusive.

Here we report experimental evidence of grain rotation
in a colloidal polycrystal. Furthermore, despite the pre-
dictions of continuum theories that treat grains as rigidly
rotating objects, we find that grains can also split apart
into counterrotating regions. These regions are them-
selves composed of smaller “granules” that rotate inde-
pendently. Using simulations of grain splitting events,
we find that the free energetic cost of such grain splitting
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is prohibitively high for large grains, explaining why this
phenomenon has been overlooked in continuum models of
grain boundary motion. New models of grain coarsening
that incorporate grain splitting may offer more accurate
predictions for the structural dynamics of nanocrystalline
materials.

II. EXPERIMENTAL METHODS:
PREPARING A SIMPLE POLYCRYSTAL

We prepare colloidal suspensions of silica spheres of
diameter 1.3 µm (Sekisui Micropearl Spacers, Dana En-
terprises International, CA), in dimethyl sulfoxide. We
pipette this suspension into a wedge-shaped cell con-
structed from two glass coverslides [35], and tilt the cell
to allow the particles to sediment into the narrow end
of the wedge, where they form an effectively 2D hard
sphere crystalline monolayer. To create grain boundary
loops within the monolayer, we use the “optical blast-
ing” technique [36]. Briefly, because the refractive index
of the particles is less than that of the suspending fluid,
a focused laser beam repels the particles. We use opti-
cal blasting to radially repel particles within the mono-
layer, creating space that attracts grain boundaries. This
method can be used to move grain boundaries and create
grains with custom shapes [36].

As a first step toward studying polycrystalline systems
in which each crystal grain moves under the possibly com-
peting influences of multiple neighbor grains, we use op-
tical blasting to assemble two adjacent grains (labelled 1
and 3 in Fig. 1a), both embedded within a larger crystal
grain (labelled 2 in Fig. 1a). We use this simple polycrys-
talline grain configuration to explore how grain 1 moves
in response to interactions with its two neighbors: grain
2, whose lattice is oriented counterclockwise relative to
grain 1; and grain 3, whose lattice is oriented clockwise
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relative to grain 1. This grain configuration is observed
at a rate of 2 frames/minute.

As described in the sections below, we find that in re-
sponse to the competing interactions with its two neigh-
boring grains, grain 1 first steadily rotates as a rigid ob-
ject, and then abruptly splits apart into two counterro-
tating regions.

FIG. 1. A grain rotates to better match the orientation of
its larger neighbor in a simple 2D colloidal polycrystal. (a)
Grain 1 (center of the microscope image) is oriented at an
angle θ relative to the horizontal axis (dotted line), and is
adjacent to grain 2 (shaded dark) and grain 3 (shaded light).
The polycrystal is shown here at t = 0, and grain boundaries
are highlighted with bold white outlines. The misorientation
angles between grain 1 and its neighbors are φ1,2 and φ1,3, re-
spectively. (b) Over time, grain 1 rotates counterclockwise to
better match the orientation of grain 2. Grain 1’s orientation
θ is plotted with black markers. Error bars indicate standard
error of the mean (SEM) obtained by averaging over all par-
ticles in the grain. The rotation reduces the Read-Shockley
energy per unit length (gray line and open circles, scaled GB
energy) relative to its t = 0 value.

III. GRAIN ROTATION

We observe evidence of grain rotation within our
colloidal polycrystalline grain configuration. Over the
course of about 8 minutes, grain 1 in Fig. 1a shrinks
and also rotates counterclockwise as a rigid object to
better match the orientation of grain 2. This rotation
lowers the free energy; we estimate the reduction using
the Read-Shockley grain boundary energy equation, a
continuum description which, in two dimensions, defines
the cost per unit length of a grain boundary segment as

γ(φ) = γ0φ(A − lnφ), where φ is the misorientation an-
gle and A and γ0 are constants determined by the elas-
tic moduli of the crystal [8]. In our colloidal system,
A ≈ 1 [36]. As grain 1 rotates counterclockwise, it be-
comes more aligned with grain 2 and more misaligned
with grain 3. The Read-Shockley energy per unit length
decreases overall (Fig. 1b) because the boundary with
grain 2 is longer than the boundary with grain 3. In-
deed, an effective torque on grain 1 due to each of its
neighbors can be computed from the derivative of the
Read-Shockley energy with respect to the misorientation
angle: τeff = s dγ/dφ is the torque on a length s of
a grain boundary with misorientation angle φ [28, 29].
Computing the effective torques applied by the neigh-
boring grains, we find that throughout grain 1’s rotation,
the counterclockwise torque τ1,2 exerted by grain 2 is al-
ways more than twice the clockwise torque τ1,3 exerted
by grain 3. This torque imbalance causes the observed
counterclockwise rotation, in accordance with the Read-
Shockley theory.

FIG. 2. A colloidal crystal grain splits to coalesce with its
neighboring grains. (a) A central grain (grain 1) experiences
opposing torques (curved arrows) and splits into two counter-
rotating regions. To accommodate the splitting, individual
granules outlined in blue and yellow rotate independently (ar-
rows indicate particle displacements; circles indicate minimal
displacements smaller than the size of an arrowhead). (b) The
orientations of the particles from the two counterrotating re-
gions (counterclockwise in blue, clockwise in yellow) abruptly
change during splitting. Error bars indicate SEM obtained
by averaging over orientations of individual granules.
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IV. GRAIN SPLITTING

While the observed grain rotation is well described
by conventional grain torque theories, we also observe
a microscopic mechanism of grain coarsening that is be-
yond their purview. Fig. 2 shows grain 1 from Fig. 1,
after shrinking and rotating over the course of 8 min-
utes. Grain 2 and grain 3 still exert opposing torques
on grain 1, but in this case grain 1 does not rotate as
a rigid object. Instead, as shown in Fig. 2, the grain
splits apart into two counterrotating regions. The left
region (blue outlines) rotates counterclockwise to match
the orientation of grain 2, while the right region (yellow
outlines) rotates clockwise to match the orientation of
grain 3. We observe that this splitting reduces the free
energy of the system by 60 percent, as approximated by
the Read-Shockley grain boundary energy.

A. Granule formation

Remarkably, the counterrotation of these two regions
occurs via the independent rotation of individual gran-
ules, each composed of very few particles rotating to-
gether as a rigid object. Fig. 2a outlines each granule
and indicates the displacements of individual particles
with arrows. To track the rotation of the two counterro-
tating regions, we measure the average orientation of the
counterclockwise/clockwise (blue/yellow) splitting parti-
cles throughout the experiment. Both sets of particles
slowly rotate counterclockwise as described in the pre-
ceding section, until t = 8 min, when the grain abruptly
splits.

These individually rotating granules form because
grain splitting takes place over a much shorter time scale
than rigid-object grain rotation. Consider a grain rotat-
ing as a rigid object. Particles farther from the center
of rotation must move a greater distance, which limits
rotation speed. However, the same change in crystal ori-
entation can also be achieved with much shorter displace-
ments. This is accomplished when particles move to the
closest final lattice position, so that multiple hexagonal
regions form, each rotating about its own center. This
is illustrated in Fig. 3a-b, where an initial lattice (black
points) is overlaid with a rotated lattice (blue points),
creating a Moiré pattern with hexagonal regions (pink).
The diameter d of these hexagonal “ideal granules”, mea-
sured in lattice constants (LC), is determined geometri-
cally and varies as a function of the misorientation an-
gle φ between the lattices as d = (1 + cosφ) /

(√
3 sinφ

)
,

with lower misorientation angles corresponding to larger
hexagons. Note that for d < 3, granules can no longer be
clearly defined.

The granules observed in the grain splitting experi-
ment (Fig. 2) can be understood by considering the ideal
granules set by the underlying Moiré patterns. This is
shown in Fig. 3c, where the t = 8 min experimental im-
age is overlaid with the ideal granules (outlined in pink)

FIG. 3. Rotating granules are determined by the underly-
ing Moiré pattern. (a) Two overlaid triangular lattices with
misorientation angle φ form a Moiré pattern with hexagonal
regions. For each pattern, an ideal granule is outlined. The
diameter d of an ideal granule decreases with increasing φ. (b)
When each black lattice site is matched to the nearest blue
lattice site, the displacements show clockwise rotation about
the center of each ideal granule. (c) In the experiment from
Fig. 2 at t = 8 min, the lattices of grains 1 and 2, which have
a misorientation angle of φ1,2 = 9◦, determine ideal gran-
ules (outlined in pink). The counterclockwise-rotating gran-
ules are fragments of ideal granules that have been cut off by
neighboring boundaries.

determined by the crystal lattices of grains 1 and 2.
The misorientation between these lattices is 9◦, corre-
sponding to ideal granules with diameter d = 7.3 LC.
Comparing the pattern of ideal granules with the ex-
perimentally observed granules, we see that the experi-
mental counterclockwise-rotating granules (blue) are ex-
actly bounded by the ideal granule boundaries, the grain
boundary (white), and the boundaries of the clockwise-
rotating granules (yellow). Although the experimental
granules are not perfect hexagons, the particle trajecto-
ries during splitting are determined by the underlying
Moiré patterns. A similar mechanism for grain growth
has been previously proposed [26, 27], but never directly
observed.

B. Free energy barrier to grain splitting

Although grain splitting ultimately reduces the free en-
ergy, the system must first overcome an energy barrier.
During grain splitting, many tiny grain boundaries form
between the granules. To estimate the free energetic cost
of creating these granule boundaries, we cannot use the
Read-Shockley equation, because the granules each con-
tain few particles and therefore are not well described by
a continuum theory. Instead we introduce a model for
the Helmholtz free energy of the hard sphere colloidal
crystal.
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1. Model for the free energy of a colloidal crystal grain

We calculate the Helmholtz free energy F = U − TS,
where U = 0 for the hard sphere colloidal particles, T
is the temperature, and S is the entropy. We model the
2D colloidal polycrystal as a collection of hard disks of
radius R, and compute its entropy as S = kB

∑
i ln vi

πR2 ,
where we sum over every particle in grain 1. Here, kB is
the Boltzmann constant and vi is the area of free space
available to the ith particle, that is, the space that can
be accessed by the particle’s center without the particle
overlapping with any other particles in their current posi-
tions (an example is shown in Fig. 4b). This formulation
of entropy correctly predicts that, in a dense suspension
of colloidal hard spheres, the most statistically favorable
way to arrange the particles is on a triangular lattice
where the particles have the most free space on aver-
age. Similar approaches have been previously applied to
counting microstates of hard sphere systems [37–40].

FIG. 4. The Helmholtz free energy of the grain increases
before decreasing during the experimentally observed grain
splitting. (a) Each particle’s free space (light gray shape at
the center of each particle) is shown before and after grain 1
splits. (b) A single particle is highlighted, showing that the
edge of the particle’s free space corresponds to the farthest
position the particle could move to (dotted particle outline)
without overlapping its neighbors in their current positions.
(c) Helmholtz free energy over time as the grain splits, as-
suming that particles move along straight trajectories. Grain
splitting lowers the energetic cost of the grain boundaries,
but first requires an increase in energy. Here the elapsed time
δt = t− 8 min.

2. Determining the energy barrier

Though we have the experimental particle positions
from before and after the splitting event, we must in-
terpolate the particle positions between those two points
in time to find the free energy barrier. We assume each
particle moves in a straight line at a constant rate from
their pre-splitting positions to their post-splitting posi-
tions. At each timestep, we calculate the free energy
as F = −kBT

∑
i ln vi

πR2 . As shown in Fig. 4, this esti-
mated free energy initially increases as the granules ro-
tate, since granule rotation introduces many new gran-
ule boundaries. Then the free energy ultimately de-
creases as the granules align into their final crystal ori-
entations. Overall, during the experimentally observed
splitting event, the system overcomes an energy barrier
of height ∆F = 5.8 kBT , indicating that this barrier can
be overcome by a thermal fluctuation.

3. Effect of grain size and misorientation angle

Grain coarsening via grain splitting has not been pre-
viously reported, to our knowledge. To investigate the
range of situations in which grain splitting may occur,
we studied how the height of the free energy barrier de-
pends on both the diameter D of the central grain and
the misorientation angle φ between that grain and its two
neighbors. We simulated grain splitting events in which
a circular central grain is neighbored by a left grain and
a right grain with equal and opposite misorientation an-
gles, as shown in Fig. 5. The central grain then splits into
granules that rotate according to the underlying Moiré
pattern. For sufficiently small misorientation angles and
grain diameters, there is not enough room within the
central grain for multiple granules to form, so we exclude
this very low D, low φ (high d) region of the phase space
(d & 4D/5). For each misorientation angle φ and grain
diameter D, we compute the free energy at 11 timesteps.
For details on these simulations, see Supplemental Mate-
rial at [url will be provided by publisher]. We find that
the simulated system always overcomes a free energy bar-
rier during splitting.

As shown in Fig. 6, the free energy barrier to grain
splitting ∆F/kBT increases with both the diameter of
the grain D and the misorientation angle φ between the
central grain and the two neighboring grains. These
trends can be understood intuitively by considering the
total length of granule boundaries formed during the
splitting event. Higher misorientation angles result in
smaller granules, and thus more granule boundaries for
a set grain diameter D. For a fixed misorientation angle,
larger grains divide into more granules, again leading to
more granule boundaries. We can estimate how the total
length of granule boundaries L depends on φ and D by
approximating that the grain divides into whole hexag-

onal ideal granules. Then L ≈
√

3
(
D2

d +D
)

, where
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FIG. 5. Grain splitting events were simulated to determine
how the free energy barrier depends on grain diameter D and
misorientation angle φ. An example simulated grain splitting
event with D = 15 LC and φ = 15◦ is shown. A central
grain (white particles) is initially neighbored by grains (light
and dark gray particles) with equal and opposite misorien-
tation angles φ. The central grain splits via granules that
rotate counterclockwise (blue) and clockwise (yellow) accord-
ing to the underlying Moiré pattern. Particle displacements
are shown with blue and yellow arrows.

d = (1 + cosφ) /
(√

3 sinφ
)

is the ideal granule diame-
ter determined by φ. The free energy barrier ∆F/kBT
should scale like L. This scaling prediction is plotted as a
surface in Fig. 6, linearly fit to the black data points de-
termined by directly calculating ∆F/kBT from the grain
splitting simulations.

Only a small range of d and D values allows for a grain
splitting barrier that is accessible within a few kBT , so
that a typical thermal fluctuation could overcome the
barrier. As such, grain splitting events are likely to be
rare, except in systems with very small grains with rel-
atively low misorientation angles. Indeed, the barrier
height for the experimentally observed splitting event oc-
curs within the low-barrier region of the phase space (yel-
low diamond in Fig. 6).

V. CONCLUSION

We have performed the first experimental study of a
2D colloidal polycrystal in which a single crystal grain ex-
periences competing torques caused by its two neighbor
grains. We have observed that this grain rotates in the
direction of the net torque, as predicted by established
continuum theories. However, this conventional frame-
work cannot explain our observation of grain splitting,
in which the grain separates into two counterrotating re-
gions composed of multiple independently rotating gran-
ules. Furthermore, because the granules contain so few
particles, the continuum Read-Shockley model for the
free energy of a grain boundary is insufficient to describe
the free energy barrier to grain coarsening via grain split-
ting. We have directly computed the entropy and free en-

ergy of the system during splitting, finding that there is
a barrier that increases with grain size and grain misori-

FIG. 6. The barrier to grain splitting increases with increas-
ing grain diameter D and decreasing ideal granule diameter d
(increasing misorientation angle φ). The shaded surface plot
with dashed lines represents the prediction that the energy
barrier scales like L ≈

√
3D (D/d+ 1), an approximation

for the total length of granule boundaries. The black data
points are the free energy barrier heights ∆F/kBT as directly
computed from grain splitting simulations. The single yellow
diamond data point represents the energy barrier from the
experimentally observed splitting event (Fig. 4c). Shades of
gray correspond to values of ∆F/kBT , as indicated by the
colorbar.

entation. While we determined this free energy barrier
for our hard sphere system, it persists upon adding an
attractive interatomic potential, such as Lennard-Jones,
because atomic bonds stretch as granules rotate. Grain
splitting is likely to be a significant mechanism for grain
coarsening in the regime of small grains and low misori-
entation angles. Consequently, grain growth in nanocrys-
talline materials may be better described by incorporat-
ing the mechanism of grain splitting into mesoscale mod-
els in this regime.
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