Simple Temporal Networks for Improvisational Teamwork

Omitted for blind review

Abstract

When communication between teammates is limited to
observations of each other’s actions, agents may need
to improvise to stay coordinated. Unfortunately, cur-
rent methods inadequately capture the uncertainty in-
troduced by a lack of direct communication. This paper
augments existing frameworks to introduce Simple Tem-
poral Networks for Improvisational Teamwork (STN-
IT) — a formulation that captures both the temporal de-
pendencies and uncertainties between agents who need
to coordinate, but lack reliable communication. We de-
fine the notion of strong controllability for STN-ITs,
which establishes a static scheduling strategy for con-
trollable agents that produces a consistent team sched-
ule, as long as non-communicative teammates act within
known problem constraints. We provide both an exact
and approximate approach for finding strongly control-
lable schedules, empirically demonstrate the trade-offs
between these two approaches on a benchmark of STN-
ITs, and show analytically that the exact method is cor-
rect. In addition, we provide an empirical analysis of the
exact and approximate approaches’ efficiency.

Introduction

In a team where agents must work together, they would
ideally be able to either pre-negotiate a coordination
strategy or communicate one in real-time. However,
there may be situations, such as in disaster relief res-
cue scenarios or ad-hoc teams, where teams of agents
must find a way to work together despite not necessarily
being able to communicate directly. In such improvisa-
tional teams, agents must coordinate their tasks by only
observing already-executed actions.

Existing work in multi-agent coordination either re-
lies on solving the problem centrally or requiring com-
munication before or during execution (Boerkoel and
Durfee 2013; Boerkoel et al. 2013). Other work in
human-robot teams emphasizes the ability to account
for humans’ uncertainties by allowing the robots to
dynamically recompute their plans in response to the
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humans’ actions (Castro et al. 2017; Hoffman and
Breazeal 2007). Finally, current work in temporal con-
trollability places restrictive assumptions on the forms
of uncertainty that a teammate could introduce (Vidal
and Fargier 1999; Hunsberger 2009). By contrast, we
assume an agent must schedule its actions before execu-
tion and account for its teammates without negotiation.

This paper introduces the Simple Temporal Network
for Improvisational Teamwork (STN-IT) to account for
temporal planning situations where rational agents must
coordinate their actions to complete a task, but can only
do so by observing each other’s actions. We characterize
strong controllability for STN-ITs and discuss the chal-
lenges for establishing such controllability in STN-ITs.
We present both an exact, Mixed-Integer-Programming-
based approach, for finding strongly controllable solu-
tions to an STN-IT in a sound and complete manner,
and an efficient Linear-Programming-based approxi-
mate approach. Then, we empirically compare our ap-
proaches across a new benchmark of STN-ITs for both
efficiency and accuracy.

Background

As a motivating example used throughout this paper,
consider a scenario where a robot and a novel human
teammate are assigned to pack a box together (Figure
1). Both have packed similar boxes before and are aware
of the steps and timing constraints. The robot, agent C,
and human, agent U, move to the table, and each press a
button to start the process. It takes the human between 0
and 10 seconds to get there (Uy), and robot C between 0
to 5 seconds (Cp). A box then enters on a conveyor belt,
giving the robot between 4 and 5 seconds to remove it
and place it on the table after they press the button and 2
to 8 seconds after the human presses their button (C).
From there, the human will take between 1 and 3 sec-
onds to place the packing material in it (U1). The robot
can then place the item O to 5 seconds later (C5). Once
the robot has placed the item, the human will take be-
tween 2 and 8 seconds to seal the box (Us). However, to
allow enough time to obtain supplies, the human has the



Figure 1: Distance graph of our STN-IT example.

additional constraint that their second action (Us) must
occur between 4 and 6 seconds after their first action
(U1). The box must be fully packed within 11 seconds.

In this section, we introduce how we can represent
the structure of this problem using existing temporal
network formulations. We also discuss how current rep-
resentations are inadequate in capturing the robot’s un-
certainty introduced by the lack of direct communica-
tion with its human teammate.

Simple Temporal Networks

A Simple Temporal Network (STN) is a graph that con-
sists of a set of timepoints 7', constraints between those
timepoints C, and a “zero” timepoint z that acts as a
reference point and is assigned the time 0 (Deichter,
Meiri, and Pearl 1991). A constraint in C' is represented
as t; —t; < ¢, for timepoints ¢;,¢t; € T. When
tl' — tj S Cjs also CXiStS, then —Cjg S tj — ti S Cij,
which we rewrite as t; — t; € [—cji,ci;]. An STN
solution, or schedule, is an assignment of the time-
points in 7" such that all constraints in C' are satisfied
(Deichter, Meiri, and Pearl 1991). As shown in Fig-
ure 1, an STN can be represented graphically, where
each timepoint appears as a node and each constraint
tj —t; € [—cji,ci;] appears as a directed edge from ¢;
to ¢; with label [—cj;, ¢;;]. The direction of the edges
is based on a partial ordering of the nodes with respect
to time. Constraints involving the zero timepoint with
the form ¢; — z € [—¢;., c;;] are represented as self-
loops with label [—c; ., c,;]. Distance graphs, as shown
in Figure 2, are helpful in determining a solution be-
cause they can be used to calculate implicit constraints
between two timepoints using shortest path algorithms.
Maintaining distance graphs can also be useful in guid-
ing scheduling decisions during dispatch, the process of
the agent deciding when to execute its events.

Multi-agent STN

A Multi-agent Simple Temporal Network (MaSTN), M,
consists of multiple local STNs for each agent along
with global constraints C'p; that connect each agent’s
local STNs. In a MaSTN with n agents, we can de-
fine agent 4’s local STN as S° = (z,T% C%) so that
M = (S',...,8™ Cy), where CM is the union of
all the C’s and the global constraints. We set z as the

shared zero timepoint across each agent’s local STN to
ensure a common reference point. Furthermore, agent ¢
is responsible for assigning times to the timepoints 7"
(Boerkoel and Durfee 2013). Figure 1 is an example of
a MaSTN involving two agents U and C'.

A MaSTN is decoupled if every combination of so-
Iutions of the n local agents’ STNs is a solution to
the original MaSTN. Generally, decoupling a MaSTN
places additional constraints onto each agent to em-
bed the global constraints. For instance, the example
STN could be decoupled if we assigned Cy = [1, 3],
Up = [074]a C1 = [67 6]’ U = [77 9]’ Cy = [77 9]7
and U; = [11,11]. However, decoupling assumes that
agents can negotiate a strategy before execution, which
is not the case in improvisational teams.

STN with Uncertainty

A Simple Temporal Network with Uncertainty (STNU)
is an STN with the set of events, T, partitioned into
T¢, controllable events, and T, uncontrollable events
(Vidal and Fargier 1999). While events in T are deci-
sions made by an agent in terms of assigning the time-
points, those in 7" are decided by “Nature,” an exter-
nal force not controlled by the agent and realized dur-
ing execution. Each uncontrollable event, ¢; € T is
associated with a unique contingent constraint of the
form t; — t; € [Ib,ub], where 0 < [b < wub and
t; € T°. Once t; is executed, the value of ¢; is received
from Nature, which determines how long after ¢; that
t; will occur by sampling the interval [Ib, ub]. Thus, C'
can be partitioned into contingent constraints (C¢), de-
scribed above, and requirement constraints (C'r), which
are normal STN constraints (Hunsberger 2009).

An STNU is controllable when there exists a strategy
to work around the uncertainty in the problem. Strong
controllability occurs when the controllable agent can
schedule its events pre-dispatch such that, for every
realization of the uncontrollable timepoints given the
problem’s constraints, there is a feasible solution. The
STNU is dynamically controllable when the control-
lable agent can react to the uncontrollable timepoints
for every realization during dispatch (Vidal and Fargier
1999). This paper focuses on strong controllability.

From the robot’s perspective, the human’s timepoints
and constraints, drawn in red in Figure 1, are in some
sense uncontrollable/contingent. However, our running
example cannot be captured as an STNU, since it vi-
olates multiple STNU assumptions. For instance, U,
has three incoming contingent edges, one of which
has a lower bound of 0. So, whereas STNUs char-
acterize which events and constraints are uncontrol-
lable/contingent (e.g., due to the inherent uncertainty of
independent, natural events), we need a new formula-
tion that is capable of characterizing entire agents as un-
controllable (e.g., due to a lack of communication with
a novel teammate), which we define next.



STN for Improvisational Teamwork

We define an STN for Improvisational Teamwork
(STN-IT) as a MaSTN where the set of agents, A, are
partitioned between a set of controllable agents, AC,
and uncontrollable agents, AY. That is, agents in AC
can strategize and coordinate their scheduling strategies
with other agents in A®, but not agents in AY. While
we assume no ability to directly control or communi-
cate with agents in AY, we do make a limited set of
assumptions for how all agents will behave.

1. Problem Observability: Agents can observe and
reason about the global STN-IT.

2. Event Observability: Agents can observe when all
events occur as they are executed.

3. Execution Consistency: Agents will choose an ex-
ecution strategy that is consistent with all problem
constraints and event observations once they occur.

We acknowledge that these assumptions limit the
types of agents with which we can achieve improvisa-
tional teamwork. For instance, these assumptions may
apply better to an ad-hoc robot teammate than to a hu-
man teammate. We elaborate on ideas for relaxing these
assumptions in our discussion of future work.

In the remainder of this paper, we assume a single
agent of each type for ease of composition. We believe
most methods presented will extend to teams of agents
where agents of the same type can communicate with
each other, but expanding this work to more general
teams of agents is left as future work.

Order of Events

Running the Floyd-Warshall algorithm on the STN-IT’s
distance graph reveals all implicit constraints (Figure
2). This naturally imposes an order between most, but
not all, pairs of events. Consider two arbitrary events ¢
and j, where we assume w.l.o.g. that —c;; and ¢;; are
the lower and upper bounds on the time that elapses be-
tweeniand j: t; — ¢; € [fcjlv, cij]. This pair will have
one of two relationships, which we define next.

Case 1: precedes (—cj;,c;j > 0) The time differ-
ences between ¢ and j are non-negative, so node ¢ must
happen earlier than j. We define i precedes j (¢ — j),
which implies that j’s agent has the responsibility to sat-
isfy the constraints between them and account for how
1 is executed. For example, in Figure 2, the edge from
Cy to C1 has the weights [4, 5], so Cy precedes C'.
Notice that Case 1 also includes edges with [0, 0]
weights, which require ¢ and j to be fully synchronous.
In this case, if < and j belong to the same agent, we
define an arbitrary ordering. If 7 and j belong to differ-
ent agents, we assume that the controllable node pre-
cedes the uncontrollable node, which places the onus
on the uncontrollable agent to observe and synchronize

(5,9]

Figure 2: Distance graph of example problem after run-
ning Floyd-Warshall

its event. In practice, exact synchrony may be impossi-
ble, so practitioners may choose to replace synchronous
constraints with ones with more built-in tolerance.

Case 2: unordered (—cj; < 0,c;; > 0) Case 2 occurs
when there is no clear precedence order between nodes,
which we define as unordered (i.e., i <> j). These two
nodes share a conditional responsibility that is triggered
by whichever one acts first. While both nodes remain
unexecuted, neither agent needs to worry about satisfy-
ing the constraints between them. However, as soon as
one agent executes, the unordered edge gets converted
to an ordered one with one node preceding the other
(Case 1). Specifically, if 7 executes first, j should take
the responsibility and treat their edges as if —cj; = 0
and vice versa. In Figure 2, the dotted edge from Cj to
Uy has weights [—2, 3], which is equivalent to a directed
edge from Uy to Cy with weights [—3, 2]. So, if Uy ex-
ecutes first, Cy must happen within 3 units of time, else
Uy must happen within 2 units of time after Cj.

Strong Controllability of an STN-IT

We formally define an STN-IT to be strongly control-
lable if we can assign specific times to the controllable
timepoints in a way that is guaranteed to work with
any dynamically determined realization of uncontrol-
lable timepoints. That is, uncontrollable timepoints are
executed only after all events that precede them in order
to remain consistent with all problem constraints.

Our assumptions mean that the uncontrollable agent
can both reason about the problem constraints and dy-
namically respond when there is a constraint from the
controllable agent to the uncontrollable agent that pre-
cedes one of its events (i.e., it knows it must wait for
the controllable agent to finish using a tool before it
can begin using it). However, when one of the uncon-
trollable agent’s events precedes one of the controllable



agent’s events, we do not assume that the uncontrollable
agent can anticipate any effects other than those natu-
rally implied by the original problem constraints. Once
the distance graph has been computed, the uncontrol-
lable agent only needs to know about its timepoints and
any incoming or unordered edges involved in them, as
highlighted in red in Figure 2. Even with our assump-
tions, finding a strongly controllable STN-IT is non-
trivial. There may be many local schedules that corre-
spond to a globally-consistent solution but since agents
cannot communicate, the controllable agent cannot be
sure which schedule the uncontrollable agent will pick.

Approaches for STN-IT Strong
Controllability

In this section, we explore two methods for finding a
strongly controllable solution to an STN-IT. The first
uses a Mixed Integer Linear Program (MILP) to find an
exact solution. However, MILP’s are generally NP-Hard
to solve, so we provide a method for efficiently finding
an approximate solution using a Linear Program (LP).

An Exact Algorithm: STN-IT-SC-MILP

We introduce a method for determining a strongly con-
trollable solution to an STN-IT using a Mixed Integer
Linear Program (MILP)!. We also adopt notation from
Wilson et al. (2014), which introduces decision vari-
ables t; and t; that serve as shorthands for the lower
and upper bounds on the constraint between ¢; and the
zero timepoint. Thus, if the STN-IT is strongly con-
trollable, our MILP will return assignments to decision
variables ¢;” and t;" that specify the range of times each
event can occur for that particular controllable solution.
STN-IT-SC-MILP:

+ o —
tj = tj
+ —
ti —tj < Cji

+ —_
t 7151' Scij

Vi, e T¢ (1)
Vi,jlt;eTi—j (2)
Vi,jlt; €T j»i (3)

t; <tf vVt e T (4)

t; = max{t; —c;i} vt;e T (5
ili—j

t;r = min'{tj + Cij} th S T (6)

i|j»i

STN-IT-SC-MILP fully assigns all controllable time-
points by enforcing tj' = t; (Eq. 1) for all control-
lable timepoints. Controllable timepoints are assigned
to be consistent with the extreme values of any pre-
ceding uncontrollable timepoints in Egs. 2-3. Eq. 2 en-
sures that ¢;’s lower bound is consistent with full range
of times for all timepoints ¢; that precede it (i — j),

"For clarity, we express our solution using linear con-
straints involving non-linear min/max functions, which can be
converted into a linearized MILP.

while Eq. 3 does the same for ¢;’s upper bound. Note
that the notation 7 — ¢ in Eq. 3 is short for the cases
when ¢ precedes or is unordered with j, and handles
the case when uncontrollable agent acts first in an un-
ordered edge. Because we assign specific times to con-
trollable timepoints, Eqs. 2-3 also naturally enforce all
of the controllable agent’s internal constraints.

At the same time, the MILP enforces that each uncon-
trollable timepoint ¢; maintains the full range of possi-
ble times that ensures strong controllability, with Eq. 4
ensuring the intervals are well-formed. Because strong
controllability assumes uncontrollable agents can only
adjust to events that have already occurred, our MILP
adjusts the ranges of uncontrollable timepoints only
in response to the timepoints ¢; that precede ¢;. Note
that the lower bound of the constraint from ¢; to ¢; is
t; —t; < cj;, which can be rewritten as t; > t; — cj;.
Then, the smallest adjustment we can make to ¢;’s lower
bound (tj_) while ensuring ¢t; > t; — ¢;; holds for all ¢;
that precede ¢; is exactly max;);_,;{t; — c;i}, which
is achieved by Eq. 5. Similarly, Eq. 6 achieves the nec-
essary updates to t;’s upper bound. Finally, unordered
constraints only need to be used to update the upper
bound of ¢;, so they are included in Eq. 6 but not 5.
While we could opt to include an objective function to
prioritize among solutions, none is needed in this case.

We now step through how our MILP would apply to
the distance graph of our running example displayed
in Figure 2 with the output shown as Figure 3. While
for ease of explanation, we discuss the MILP as oper-
ating sequentially on each timepoint, in reality, the fact
that the MILP considers all constraints simultaneously
is essential in its ability to find strongly controllable so-
lutions. First, since Cjy has no timepoints that precede
it, the MILP only has to assure that Cjy’s assignment
is consistent with both its original range of times and
the unordered constraint shared with Uy (Eq. 3). These
two constraints enforce Cj to execute within the range
of [0, 2], so the MILP happens to assign Cy to 0. With
Coy = 0, the MILP can now effectively treat the origi-
nally unordered edge as one with Cj preceding Uy and
label [0, 3], which it does naturally by only concerning
itself with the upper bound on the constraint from Cj to
Uy (Eq. 6). Thus, our MILP updates the upper bound of
Uy to 3. Note that during actual execution, agent U will
start off believing it has until time 4 to complete Uy as
shown in Figure 2. However, as soon as it observes that
C\ happens at time 0, it will update its executable range
to be [0,3], as captured in Figure 3.

Next, the MILP considers that C; (and similarly
C5) must be able to account for the full range values
that agent U might consider for completing Uy with-
out knowing its value in advance. Since agent U, could
choose to execute as Uy as early as 0, we know the lat-
est C'1 can occur is 0+6=6 (Eq. 3), and similarly, since
the latest Uy could occur is 3, the earliest C'; can take
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Figure 3: Strongly controllable solution to our example

place is 3 + 2 = 5 (Eq. 2). Ultimately, the MILP de-
cides to assign C; = 5. Finally, when adjusting U;’s
range of values (and similarly Us), the MILP considers
U’s current range [5, 7], along with the ranges implied
by both incoming edges (e.g., the edge from Uy, which
implies a range for U; of [0, 3]+[3, 7] = [3, 10], and the
edge from C4, which implies a range of [5, 5] + [1, 3] =
[6, 8].) Egs. 5-6 then take the intersection of these three
to obtain U;’s new range Uy : [5,7] U [3,10] U [6,8] =
[6, 7]. Again, before actual execution, agent U may not
realize it cannot start U/; before time 6, but it will real-
ize it by time 5 when it observes C; has occurred. As
illustrated in Figure 3, the MILP ends up using the same
logic to constrain Cy = [9,9] and Uy = [11, 11] to give
us our final, strongly controllable solution.

Correctness of STN-IT-SC-MILP

After defining our MILP, we argue that our proposed
MILP is complete and sound by presenting two theo-
rems and the corresponding proof sketches?.

Theorem 1. STN-IT-SC-MILP will return a strongly
controllable schedule to an STN-IT any time one exists.

Proof (Sketch). Eq. 4 ensures a valid interval of times
for each timepoint. By using proof by contradiction, we
must show that Eqs. 5-6 set each uncontrollable time-
point’s ¢, and ¢! while assuring that the corresponding
interval retains the full range of time that is consistent
with all events that precede it, as required by the defini-
tion of strong controllability.

We assume that there exists at least one uncontrol-
lable timepoint t;, where its earliest possible time ¢,
does not satisfy Eq. 5 (the proof for the upper bound
t; follows symmetrically). However, ¢, cannot be
less than max;;,,{t; — cpi}, since ¢, would then
be inconsistent with respect to its constraints with at
least one timepoint ¢; that precedes it, which violates
our assumption. Similarly, ¢, cannot be greater than

2Full proofs available upon request.

max;|;_,{t; — Cr:}, since that would contradict the
assumption that we are maintaining the largest possible
interval for ¢,/. Thus, Eq. 5 (and symmetrically Eq. 6)
must hold for all uncontrollable timepoints.

Next, we consider the controllable timepoints. If an
STN-IT is strongly controllable, there must exist a fully
assigned schedule for the controllable timepoints that
will work regardless of how the uncontrollable time-
points are chosen and how the controllable timepoints
can be assigned (Eq. 1). Similar to Eqs. 5-6, we can ar-
gue by contradiction that any strongly controllable so-
lution to an STN-IT must satisfy Egs. 2-3. Assume that
there is a strongly controllable solution that violates ei-
ther Eq. 2 or Eq. 3. However, if the two timepoints
involved in the violation are controllable, not satisfy-
ing either Eq. 2 or 3 would imply violating the origi-
nal problem’s constraint between controllable variables
(since t; = t;“ Vt; € T°), which contradicts our as-
sumption of a strongly controllable solution. Similarly,
if the other timepoint involved is uncontrollable, we can
show that a violation of Eq. 2 or 3 would imply conflicts
with either the lower or upper bound on the full range
of times for that uncontrollable timepoint, thereby con-
tradicting our assumption.

Therefore, any strongly controllable STN-IT will
yield an assignment of controllable timepoints consis-
tent with the constraints of our STN-IT-SC-MILP. [J

Theorem 2. Any assignment of t; and tj' that satis-
fies the constraints of the STN-IT-SC-MILP results in a
strongly controllable solution to the original STN-IT.

Proof (Sketch). First, consider any assignment of t;

and tj to the controllable timepoints that satisfies the
MILP. From Eq. 2-3, we see that for any timepoint ¢;
that precedes a controllable timepoint ;, t; will happen
no earlier than ¢;’s latest time plus the lower bound be-
tween them (—c;;) and no later than ¢;’s earliest time
plus the upper bound between them (c;;). Thus, ¢; is
guaranteed to be consistent with ;.

Now consider any assignment of ¢ and ¢ to the un-
controllable timepoints that satisfies the MILP. To start,
we consider the relationship between an uncontrollable
timepoint ¢; and an arbitrary timepoint ¢; that precedes
or is unordered with ¢; (represented as j — 7). When
t; happens maximally early, ¢; can happen no later than
t, plus the upper bound between them, which gives us
equation (a): ¢t; < 1, + ¢;;. When i happens maxi-
mally late, ¢; can happen no earlier than t;” plus the
lower bound between them, which gives us equation
(b): t;r > t7 — ¢j;. When t; is controllable, we can
derive equations (a) and (b) directly from the MILP.

When t; is uncontrollable, we cannot do so. Instead,
we use proof by strong induction on n, the number
of uncontrollable timepoints in the STN-IT, to prove



that (a) and (b) hold between any pair of uncontrol-
lable timepoints. When there is only one uncontrollable
timepoint, its local problem must be consistent and we
have already shown that (a) and (b) hold between con-
trollable and uncontrollable timepoints. Hence, the base
case holds. For our inductive hypothesis, we assume
that for every STN-IT that has n or fewer uncontrollable
timepoints, equations (a) and (b) hold for all uncontrol-
lable timepoints ¢; that precedes or is unordered with
other uncontrollable nodes ¢; (j — 4). Then we use
proof by contradiction to prove the inductive hypothe-
sis holds for n + 1 uncontrollable timepoints.

Consider when (a) does not hold in an STN-IT with
n + 1 uncontrollable timepoints. There must be at least
one uncontrollable timepoint that does not enable any
other uncontrollable timepoint. Let’s call it the maxi-
mal timepoint ¢,,. In the STN-IT without timepoint ¢,,,,
(a) does not fail between any of the remaining uncon-
trollable timepoints by the inductive hypothesis so it
must fail between the maximal timepoint ¢,, and an-
other uncontrollable timepoint ¢;. Because (a) has failed
between t,, and t;, timepoint ¢; cannot dominate the
maximum of MILP constraint (1), so another timepoint
ti, must do so. When investigating ¢;’s relationship to
t;, we get C;k > Cim + Cmik, Which implies that there
is a shorter path from ¢; to t; through ¢,,. This result
contradicts the assumption that we ran Floyd-Warshall.
Hence, (a) must hold between all uncontrollable time-
points in the STN-IT with n + 1 uncontrollable time-
points. We can use the same reasoning to prove that (b)
must hold between all uncontrollable timepoints in the
overall STN-IT with n + 1 uncontrollable timepoints.

Overall, we have shown that every solution to the

MILP results in a strongly controllable solution to the
STN-IT. Thus, our MILP is sound. O

An Approximate Algorithm—STN-IT-SC-LP

Although our MILP can correctly determine whether an
STN-IT is strongly controllable, because MILP formu-
lations are generally NP-Hard, this approach may be in-
tractable for some problems. Thus, we also developed
a linear program (LP) version of the algorithm that ap-
proximates the MILP result. Our basic approach is to re-
place equations that contained the non-linear max/min
functions that requires formulation as a MILP with lin-
ear constraints by swapping Eqgs. 5-6 for 7-8:

t; Z t; — Cji
+ <4t
tj S ti + Cij

Vi,jlt;eT i—j5 (7)
Vi,jlt; €T j»1 (8)

Next, in order to encourage ¢; and tj to approximate
their respective maximum and minimum value, we add
an objective that maximizes the sum of uncontrollable
timepoint’s time interval (t;r — 1) relative to its time

initial interval, c,; + ¢;,, computed by Floyd-Warshall:
th—t7

maximize E wj - £ 4
Czj + Cjz
t;eTv J J

In addition, the weight w; allows us to explore different
ways of relatively weighting the uncontrollable time-
points. We have determined that giving uncontrollable
timepoints that are earlier higher weights has a small,
but positive impact. Specifically, if a timepoint ¢; is the
2" earliest one among y uncontrollable timepoints, it
will receive a weight of w; = -%7°-. In summary,

2
the approximate LP weights early timepoints and time-
points with short durations higher than late, long ones.

Empirical Evaluation

We designed an STN-IT generator inspired by Boerkoel
and Durfee (2013)’s random Multi-agent STN genera-
tor. Like the original generator, ours first randomly as-
signs some tasks to the controllable and uncontrollable
agents, each with start and end timepoints and bounds
on its duration. Next, because the original generator
focuses on creating multi-agent problems where agent
subproblems could be decoupled, we modified how we
define constraints between tasks to create more inter-
esting STN-IT examples requiring greater coordination.
Specifically, each constraint has a 25% probability of
being an unordered constraint rather than an ordered
one. After randomly deciding the type, our generator
determines bounds by uniformly sampling [-60,60] for
local constraints and [-120, 120] for global constraints.
To ensure a consistent benchmark of problems, the gen-
erator checks each constraint, skips adding it if it re-
sults in a conflict, and then randomly generates a re-
placement. Finally, the generator stops once the tempo-
ral network is connected.

Efficiency

To test the efficiency of our MILP and Approximate LP,
we used the Gurobi Optimizer’s provided implementa-
tion of the Dual Simplex and Barrier methods. While
Simplex methods have a worst-case exponential run-
time, they are often efficient in practice (Spielman and
Teng 2004). Meanwhile, the Barrier method can find the
solution in a worst-case polynomial runtime by travers-
ing inside or outside of the feasible region, but each step
is relatively expensive (Nocedal and Wright 2006).

Out of the 1,000 examples, we removed 15 problems
where the MILP could not solve the problem under the
five-minute time limit using one or the other methods.
We report the average runtime of each approach as the
problem scales to include more timepoints. Figure 4 il-
lustrates the results. The result shows that the approxi-
mate LP scales are significantly better overall than the
MILP, with much faster runtimes. The Dual Simplex
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Figure 5: Solution time (s) vs. the portion of edges in
the problem that are unordered.

method generally outperformed the Barrier method, al-
though the Barrier method has a theoretically better
worst-case runtime. We believe the Barrier method’s
vulnerability to numerical issues causes the peak in LP
runtime at 70 timepoints(GurobiOptimization 2019).
Next, we explored which features of the underlying
STN-IT benchmarks impact the MILP performance us-
ing Dual Simplex. While we found no strongly corre-
lated features, we did find that STN-ITs that timed out
or took a significant time to solve tended to be ones
with a smaller portion of unordered edges, as shown in
Figure 5. We also found that among strongly control-
lable STN-ITs, those with longer solve times tended to
have smaller average executable ranges (i.e., measured
as the size of the interval at the time of the uncontrol-
lable agent’s execution) as shown in Figure 6. We tested
a variety of other features (e.g. the ratio between un-
controllable to controllable timepoints, the ordering be-
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Figure 6: Solution time (s) vs. the average range of un-
controllable timepoints for strongly controllable prob-
lems.

tween uncontrollable and controllable timepoints, etc.)
that ended up not being all that predictive of MILP run-
time. In summary, MILP runtime is most affected by
the problem size, the tightness of timepoints’ executable
ranges, and the strictness of the timepoint ordering.

Accuracy

Next, we examined the trade-offs in terms of accu-
racy between the approximate LP and exact MILP
approaches using the more efficient Dual Simplex
Method. We also compared against two other straw al-
gorithms: an early dispatch strategy where each con-
trollable timepoint executes at its earliest possible time;
and a random dispatch strategy where each controllable
timepoint executes at a random time in the interval de-
fined by its bound with the zero timepoint z. We repeat
the random strategy 50 times and report the 95% confi-
dence interval across all instances.

Strong Controllability Validation First, we devel-
oped a program to verify the correctness of a solution
to an STN-IT. The program checked that assignments
to controllable timepoints were consistent with bounds
to other controllable timepoints and the zero timepoint
z. It also ensured that the controllable assignment was
consistent with all possible assignments to uncontrol-
lable intervals. To mimic the dynamic solving process
of the uncontrollable agent, we dynamically update the
time interval for each uncontrollable timepoint any time
a timepoint that precedes it becomes executed. During
this dynamic process, we verified that the full range of
the time interval for each uncontrollable timepoint sat-
isfied the constraints imposed by other timepoints, thus
guaranteeing the solution is strongly controllable.
Table 1 showcases the total number of complete so-
Iutions found by each method. Note that the first col-
umn reports the number of (approximate) solutions re-



Ctrl #of | #of # of Emp.
Method || solns | unctrl | timeouts Verif.
MILP 634 355 11 634
LP 1000 0 0 286
Early 1000 0 0 333
Rand. 1000 0 0 [85-101]

Table 1: Number of solutions, failures, timeouts, and
empirically verified strongly controllable solutions re-
turned by each method.

turned, which approximate methods always return. In
contrast, the last column reports the number of these
solutions returned that were empirically validated to ac-
tually be strongly controllable. The MILP clearly out-
performs the other strategies, with the highest accuracy,
as all of its solutions are empirically validated as cor-
rect. However, it does time out on 11 of the problems.
The random strategy finds only 13.4-15.9% of the cor-
rect solutions that the MILP does, while the Approxi-
mate LP and early strategies find 45.1% and 52.5%, re-
spectively. It was surprising that the naive early first ap-
proach led to strongly controllable solutions more often
than our LP approximation. This points to the existence
of structural features that make the early strategy a rea-
sonable choice in some cases, which we hope to probe
further in the future. One advantage of the approximate
methods is that they always return an approximate so-
lution, giving the team a chance of success even if it is
not guaranteed; we evaluate this next.

Empirical Performance We tested the expected per-
formance of algorithms against two simulated models
of uncontrollable agents, one that uniformly randomly
selects times from its interval and the other which se-
lects the earliest time. We then verified how often the
solution returned by each method resulted in a consis-
tent simulated execution.

There are several conclusions that we can draw from
Table 2. First, the approximate methods worked sub-
stantially better on the set of strongly controllable prob-
lems, including the random method, which had a statis-
tically significant increase in solutions. Second, the Ap-
proximate LP performed especially well against the ran-
dom uncontrollable agent in strongly controllable prob-
lems, succeeding nearly 70% of time. The LP, which
gives the controllable agent a chance to succeed, even
if it is not guaranteed, closes the relative gap across all
problems, succeeding 7% less often than MILP, though
MILP was still most likely to succeed in expectation.

The one exception is that the early first strategy had
a 100% accuracy rate for the situation where the uncon-
trollable agent always executes its timepoint as soon as
possible. This is a tautological result since if a possible
solution exists, a dynamic early strategy paired with a

Ctrl Rand. Unctrl. Early Unctrl.
Method Al | SC Al [ SC
MILP 63.4% 100% 63.4% 100%
LP 56.52% | 69.6% 52.8% 62.0%

Early 47.32% | 63.6% 100% 100%

Rand. [23.0- | [31.6%, - | [22.0% - | [30.4% -
24.6%] | 34.0%] 25.3%] 35.0%]

Table 2: Empirical performance against two simulated
uncontrollable agents reported across all problems and
just the strongly controllable (SC) instances.

strong early strategy is guaranteed to find it.

We hypothesize that there exist problem structures
where it may be infeasible to find a strongly control-
lable solution within a reasonable amount of time, but
that the approximate LP can still perform quite well.
Given that the approximate LP scales significantly bet-
ter than the MILP, we believe there are entire classes of
problems where the LP might be a better choice than
the exact MILP solution.

Discussion

Our new framework of an STN for Improvisational
Teamwork allows us to model the impromptu nature
of teamwork that must be performed without reliable
communication. We determine a set of assumptions
that enable the first definition of strong controllability
for improvisational teams. We translated this definition
into a Mixed Integer Linear Program that character-
izes and finds strongly controllable solutions to STN-
ITs when they exist and argued analytically that the
MILP was both sound and complete. We showed em-
pirically that the MILP correctly identified which STN-
IT’s were strongly controllable across a new benchmark
of 1000 randomly generated STN-ITs. However, our ex-
act MILP is generally NP-hard. Thus, we also provided
an efficient, LP-based approach that approximates the
MILP result. While the MILP scales reasonably well on
problems with fewer than 100 timepoints, we showed
that the approximate LP approach scales much better,
but does so by sacrificing overall accuracy, leading to a
lower likelihood of successful execution in expectation.

Our future work includes analyzing the characteris-
tics of STN-ITs that impact MILP and LP performance
to create more challenging benchmarks that vary key
problem traits. Knowing these characteristics could im-
prove our runtime predictions and lead to a more ef-
fective linear approximation of the MILP. We are also
interested in relaxing our assumptions for improvisa-
tional teams by, for instance, extending to teams with
more than two agents or relaxing assumptions that the
uncontrollable agent is fully rational or has full observ-
ability. Finally, we hope to validate our approaches in
an actual human-robot deployment.
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