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Abstract. Stochastic iterative algorithms have gained recent interest in machine learning and signal processing4
for solving large-scale systems of equations, Ax = b. One such example is the Randomized Kaczmarz5
(RK) algorithm, which acts only on single rows of the matrix A at a time. While RK randomly selects6
a row of A to work with, Motzkin’s Method (MM) employs a greedy row selection. Connections7
between the two algorithms resulted in the Sampling Kaczmarz-Motzkin (SKM) algorithm which8
samples a random subset of β rows of A and then greedily selects the best row of the subset.9
Despite their variable computational costs, all three algorithms have been proven to have the same10
theoretical upper bound on the convergence rate. In this work, an improved analysis of the range of11
random (RK) to greedy (MM) methods is presented. This analysis improves upon previous known12
convergence bounds for SKM, capturing the benefit of partially greedy selection schemes. This work13
also further generalizes previous known results, removing the theoretical assumptions that β must14
be fixed at every iteration and that A must have normalized rows.15
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1. Introduction. Large-scale systems of equations arise in many areas of data science,
including in machine learning and as subroutines of several optimization methods [12]. We
consider solving these large systems of linear equations, Ax = b, where A ∈ Rm×n, b ∈ Rm,
and m � n. Iterative methods which use a small portion of the data in each iteration
are typically employed in this domain. These methods offer a small memory footprint and
good convergence guarantees. The Kaczmarz method [36] is such an iterative method that
consists of sequential orthogonal projections towards the solution set of a single equation (or
subsystem). Given the system Ax = b, the method computes iterates by projecting onto the
hyperplane defined by the equation aTi x = bi where aTi is a selected row of the matrix A and
bi is the corresponding entry of b. The iterates are recursively defined as

xj+1 = xj +
bi − aTijxi

‖aij‖2
ai.

We assume that Ax = b is consistent and m > n, but make no assumption on rank(A). We18

will use rj := Axj − b to represent the jth residual and ej := xj − x∗ to represent the jth19

error term. We let A† denote the Moore-Penrose pseudoinverse of the matrix A. Additionally,20
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Figure 1.1: Several iterations of a Kaczmarz method. The iterate xj+1 is the orthogonal
projection of xj onto the solution set of the selected equation (represented by a line).

we let σmin(A) be the smallest nonzero singular value of A and unless otherwise noted, we let21

‖·‖ represent the Euclidean norm. We let ‖·‖F denote the Frobenius norm and ‖·‖∞ denote22

the `∞ norm. A visualization of several iterations of a Kaczmarz method are shown in Figure23

1.1.24

The Kaczmarz method was originally proposed in the late 30s [36] and rediscovered in the25

1970’s under the name algebraic reconstruction technique (ART) as an iterative method for26

reconstructing an image from a series of angular projections in computed tomography [27, 35].27

This method has seen popularity among practitioners and researchers alike since the beginning28

of the digital age [14, 33], but saw a renewed surge of interest after the elegant convergence29

analysis of the Randomized Kaczmarz (RK) method in [60]. In [60], the authors showed30

that for a consistent system with unique solution, RK (with specified sampling distribution)31

converges at least linearly in expectation with the guarantee32

(1.1) E‖ek‖2≤
(

1− σ2min(A)

‖A‖2F

)k
‖e0‖2.33

Many variants and extensions followed, including convergence analyses for inconsistent and34

random linear systems [49, 15], connections to other popular iterative algorithms [44, 51, 56,35

57, 21], block approaches [52, 58], acceleration and parallelization strategies [22, 37, 47, 45],36

and techniques for reducing noise and corruption [68, 32].37

Another popular Kaczmarz method extension is greedy (rather than randomized) row38

selection, which has been rediscovered several times in the literature as the “most violated39

constraint control” or the “maximal-residual control” [13, 54, 55]. This method was proposed40

in the 1950’s as an iterative relaxation method for linear programming by Agmon, Motzkin,41

and Schoenberg under the name Motzkin’s relaxation method for linear inequalities (MM)42

[48, 1]. In [1], the author showed that MM converges at least linearly (deterministically) with43
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the convergence rate of (1.1). The bodies of literature studying this greedy strategy have44

remained somewhat disjoint, with analyses for linear systems of equations in the numerical45

linear algebra community and analyses for linear systems of inequalities in the operations46

research and linear programming community [25, 26, 62, 4, 8, 9, 16]. There has been recent47

work in analyzing variants of this greedy strategy [20, 6, 7, 59]. In [59], the authors analyze48

MM on a system to which a Gaussian sketch has been applied. In [6, 7], the authors analyze49

variants of MM in which the equation selected in each iteration is chosen randomly amongst50

the set whose residual values are sufficiently near the maximal residual value. In [20], the51

authors provide a convergence analysis for a generalized version of MM in which the equation52

chosen in each iteration is that which has the maximal weighted residual value which are the53

residual values divided by the norm of the corresponding row of the measurement matrix.54

In [19], the authors illustrated the connection between MM and RK and proposed a family55

of algorithms that interpolate between the two, known as the Sampling Kaczmarz-Motzkin56

(SKM) methods.57

The SKM methods operate by randomly sampling a subset of the system of equations,58

computing the residual of this subset, and projecting onto the equation corresponding to the59

largest magnitude entry of this sub-residual. The family of methods (parameterized by the size60

of the random sample of equations, β) interpolates between MM, which is SKM with β = m,61

and RK, which is SKM with β = 1. In [19], the authors prove that the SKM methods converge62

at least linearly in expectation with the convergence rate specified in (1.1). Meanwhile, the63

empirical convergence of this method is seen to depend upon β; however, increasing β also64

increases the computational cost of each iteration so the per iteration gain from larger sample65

size may be outweighed by the in-iteration cost. This is reminiscent of other methods which66

use sampled subsets of data in each iteration, such as the block projection methods [2, 52, 53].67

Like SKM, the randomized block Kaczmarz (RBK) methods use a subset of rows τ ⊂ [m]
to produce the next iterate; rather than forcing the next iterate to satisfy the single sampled
equation as in RK, block iterates satisfy all the equations in the randomly sampled block.
The (k + 1)st RBK iteration is given by

xk+1 = xk + (Aτ )†(bτ −Aτxk),

where Aτ and bτ represent the restriction onto the row indices in τ . In [52], the authors68

prove that on a system with a row-normalized measurement matrix and a well-conditioned69

row-paving RBK converges at least linearly in expectation with the guarantee70

(1.2) E‖ek‖2≤
(

1− σ2min(A)

C‖A‖2log(m+ 1)

)k
‖e0‖2.71

where C is an absolute constant and ‖A‖ denotes the operator norm of the matrix. This can72

be a significant improvement over the convergence rate of (1.1) when ‖A‖2F� ‖A‖2log(m+1).73

However, the cost per iteration scales with the size of the blocks. In [53], the authors generalize74

this result to inconsistent systems and show that, up to a convergence horizon, RBK converges75

to the least-squares solution.76

In [29, 30], the authors introduce a framework of iterative methods known as the sketch-77

and-project methods. The sketch-and-project framework of methods produce each new it-78

erate by projecting the previous iterate onto a sketch of the linear system; i.e., xk+1 =79
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argminx∈Rn‖x − xk‖2B s.t. S>k Ax = S>k b. Subsequent works proposed and analyzed vari-80

ants with momentum [40], inexact variants [42], and adaptive variants [28]. This framework81

includes as special cases many forms of row- and column-action methods and second-order82

iterative least-squares methods [64]. Kaczmarz methods which iteratively project onto the83

solution spaces of subsets of rows in each iteration (like Block RK or SKM) can be interpreted84

and analyzed in this framework. Single row-action methods are recovered when the sketch-85

ing matrices select a single row of the system. The SKM methods are recovered when the86

sketching matrices select a single row of the system and the choice of which sketch to use in87

each iteration is made in the same way as SKM (a randomized sample then a greedy selection88

based upon sketched residual). The results recovered from [29] for this interpretation of SKM89

coincide with (1.1).90

In [50], the authors, inspired by the sketching framework in [29], construct a block-type91

method which iterates by projecting onto a Gaussian sketch of the equations. They show that92

this method converges at least linearly in expectation with the guarantee93

(1.3) E‖ek‖2≤

(
1−

[ √
sσmin(A)

9
√
s‖A‖+C‖A‖F

]2)k
‖e0‖2.94

where C is an absolute constant and s is the number of rows in the resulting sketched system.95

This result requires a Gaussian sketch which is a costly operation, however the authors suggest96

using a Gaussian sketch of only a subset of the equations. This result is most related to SKM97

and to our main result due to the presence of s, the size of the sketched system, in the bound.98

2. Previous Results. This section focuses on the convergence behavior of the RK, MM,99

and SKM methods. Each of these projection methods is a special case of Algorithm 2.1100

with a different selection rule (Line 4). In iteration j, RK uses the randomized selection101

rule that chooses tj = i with probability ‖ai‖22/‖A‖2F , MM uses the greedy selection rule102

tj = arg maxi|a>i xj−1− bi|, and SKM uses the hybrid selection rule that first samples a subset103

of β rows, τj , uniformly at random from all subsets of size β, τj ∼ unif(
([m]
β

)
), and then104

chooses tj = arg maxi∈τj |a
>
i xj−1 − bi|. As previously mentioned, RK and MM are special105

cases of the SKM method when the sample size β = 1 and β = m, respectively. Each of the106

methods converge linearly when the system is consistent with unique solution (RK and SKM107

converge linearly in expectation, MM converges linearly deterministically). In Table 2.1, we108

present the selection rules and convergence rates for RK, MM, and SKM. Note that under109

the assumption that A has been normalized so that ‖ai‖2= 1, each of these upper bounds110

on the convergence rate is the same since ‖A‖2F= m. Thus, these results do not reveal any111

advantage the more computationally expensive methods (MM, SKM with β � 1) enjoy over112

RK. There are, in fact, pathological examples on which RK, MM, and SKM exhibit nearly113

the same behavior (e.g., consider the system defining two lines that intersect at one point in114

R2), so it is not possible to prove significantly different convergence rates without leveraging115

additional properties of the system.116

In [31], the authors demonstrate that MM can converge faster than RK or SKM and
that the convergence rate depends on the structure of the residual terms of the iterations,
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Algorithm 2.1 Generic Kaczmarz Method

1: procedure Kacz(A,b,x0)
2: k = 1
3: repeat
4: Choose tk ∈ [m] according to selection rule.

5: xk = xk−1 −
aTtk

xk−1−btk
‖atk‖

2
2

atk .

6: k = k + 1
7: until stopping criterion reached
8: return xk
9: end procedure

Selection Rule Convergence Rate

RK [60] P(tj = i) = ‖ai‖2
‖A‖2F

E‖ek‖2≤ (1− σ2
min(A)

‖A‖2F
)k‖e0‖2

SKM [19]
τj ∼ unif(

([m]
β

)
)

tj = arg maxi∈τj |a
>
i xj−1 − bi|

E‖ek‖2≤ (1− σ2
min(A)
m )k‖e0‖2

MM [1] tj = arg maxi|a>i xj−1 − bi| ‖ek‖2≤ (1− σ2
min(A)
m )k‖e0‖2

Table 2.1: The selection rules and convergence rates of RK, SKM, and MM. The presented
results for MM and SKM assume that A has been normalized so that ‖ai‖2= 1.

rk = Axk − b. In particular, they prove that

‖ek‖2≤ Πk−1
j=0

(
1− σ2min(A)

4γj

)
‖e0‖2,

where γj is the dynamic range of the ith residual, γj :=
‖rj‖2
‖rj‖2∞

. Our main contribution in this117

paper is to prove that the SKM methods can exhibit a similarly accelerated convergence rate118

and the advantage scales with the size of the sample, β. Again, this advantage depends upon119

the structure of the residuals of the iterations. We define here a generalization of the dynamic120

range used in [31]; our dynamic range is defined as121

(2.1) γj =

∑
τ∈([m]

β )‖Aτxj−1 − bτ‖2∑
τ∈([m]

β )‖Aτxj−1 − bτ‖2∞
.122

Now, we let Eτj denote expectation with respect to the random sample τj conditioned upon123

the sampled τi for i < j, and E denote expectation with respect to all random samples τi for124

1 ≤ i ≤ j where j is understood to be the last iteration in the context in which E is applied.125

We state our main result below in Corollary 2.1; this is a corollary of our generalized result126

which will be discussed and proven later.127

Corollary 2.1. Let A be normalized so ‖ai‖= 1 for all rows i = 1, ...,m. Suppose the system
of equations Ax = b is consistent, define x∗ = A†b, and let x0 ∈ range(A>). Then SKM
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converges at least linearly in expectation and the bound on the rate depends on the dynamic
range, γk of the random sample of β rows of A, τk. Precisely, in the kth iteration of SKM,
we have

Eτk‖xk − x∗‖2≤
(

1− βσ2min(A)

γkm

)
‖xk−1 − x∗‖2,

so applying expectation with respect to all iterations, we have128

E‖xk − x∗‖2≤
k∏
j=1

(
1− βσ2min(A)

γjm

)
‖x0 − x∗‖2.129

130

Corollary 2.1 shows that SKM experiences at least linear convergence where the contraction
term is a product of terms that are less than one and dependent on the sub-sample size β.
When β = 1, as in RK, γk = 1, so Corollary 2.1 recovers the upper bound for RK shown
in [60]. However, when β = m for MM, Corollary 2.1 offers an improved upper bound on the
error over [31]; specifically

‖ek‖2≤
(

1− σ2min(A)

γk

)
‖ek−1‖2.

Our result illustrates that the progress made by an iteration of the SKM algorithm depends
upon the dynamic range of the residual of that iteration. The dynamic range of each iteration,
γj , satisfies

1 ≤ γj ≤ β.

Note that the upper bound, γj = β, is achieved by a constant residual where |aTi xj − bi|=
|aTi′xj − bi′ | for all i, i′ ∈ [m], while the lower bound is achieved by the residual with one
nonzero entry. As smaller γj provides a smaller upper bound on the new error ej , we consider
the situation with one nonzero entry in the residual as the “best case” and the situation with
a constant residual as the “worst case.” We now compare our single iteration result in the
best and worst cases to the previously known single iteration results of [1, 19, 31, 60]. These
are summarized in Table 2.2; we present only the contraction terms α such that

Eτk‖ek‖
2≤ α‖ek−1‖2,

for each upper bound in the case that A is normalized so that ‖ai‖2= 1 for i ∈ [m]. In131

particular, note that the worst case residual provides the same upper bound rate as those of132

[60, 19, 1].133

3. Main Results. Corollary 2.1 is a specialization of our general result to SKM with a134

fixed sample size β and systems that are row-normalized. Our general result requires neither135

row-normalization nor a static sample size. However, we must additionally generalize the136

SKM sampling distribution for systems that are not row-normalized. We now consider the137

general SKM method which samples βk many rows of A in the kth iteration (according to138

probability distribution pxk−1
defined in (3.1)) and projects onto the hyperplane associated to139

the largest magnitude entry of the sampled sub-residual.140

This manuscript is for review purposes only.



GREED WORKS 7

Best Case Worst Case Previous Best Case Previous Worst Case

MM 1− σ2min(A)

1− σ2
min(A)
m

1− σ2
min(A)

4 [31]

1− σ2
min(A)
m [1, 19, 60]SKM 1− βσ2

min(A)
m 1− σ2

min(A)
mRK 1− σ2

min(A)
m

Table 2.2: Contraction terms α such that Eτk‖ek‖2≤ α‖ek−1‖2 for the best and worst case
bounds of MM, SKM, and RK.

The generalized probability distribution over the subset of rows of A of size βk is denoted141

px :
([m]
βk

)
→ [0, 1). The sampled subset of rows of A, τk ∼ px where142

(3.1) px(τk) =
‖at(τk,x)‖

2∑
τ∈([m]

βk
)‖at(τ,x)‖

2
,143

and t(τ,x) = arg maxt∈τ (a>t x−bt)2. Thus, our generalized SKM method is Algorithm 2.1 with144

selection rule τj ∼ pxj−1 and tj = t(τj ,xj−1). Similar to the RK probability distribution of [60],145

the computation of (3.1) is utilized here simply to theoretically analyze the SKM algorithm146

without requiring normalized rows. This choice of sampling distribution conveniently simplifies147

the expected value computation in the proof of Theorem 3.1 by cancelling the numerator of the148

probability with the squared norm of the sampled row. We do not suggest that this probability149

distribution be implemented in a real world setting as it is computationally prohibitive.150

One could instead implement a uniform distribution over rows or learn the distribution151

with probabilities proportional to the squared norms of the rows (as suggested in [60]). Neither152

of these is guaranteed to coincide with the distribution defined in (3.1), due to the dependence153

on the iterate x. However, for many datasets where the row norms are (approximately) equal,154

the uniform distribution (approximately) coincides with (3.1). In particular, when the rows155

of A all have equal norm, as in the case of incidence matrices (see Section 4.2), then (3.1)156

reduces to the uniform distribution over samples of size βk. Past works which analyze SKM157

[19, 47, 46] assume that the rows of A are normalized and that the probability distribution158

over the samples of size β is uniform. To the best of our knowledge, ours is the first work159

in this area to analyze an iterative projection method with an iteration dependent sampling160

distribution.161

Our main result shows that the generalized SKM converges at least linearly in expectation162

with a bound that depends on the dynamic range of the sampled sub-residual, the size of the163

sample, and the minimum squared nonzero singular value of A, σ2min(A). In the event that164

there are multiple rows within the sub-residual which achieve maxt∈τ (a>t x− bt)2, an arbitrary165

choice can be made amongst those rows and the main result will not be affected by this choice.166

Theorem 3.1 provides theoretical convergence guarantees for the generalized SKM method.167

Whereas previous guarantees for SKM required normalized rows or fixed sample sizes β [19,168

31, 47, 46], the guarantees presented here do not require either assumption. In addition, the169

contraction term of the generalized SKM method shows dependence on the dynamic range,170

another feature lacking in previous works. Following the statement of the theorem, we use171
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standard techniques in the Kaczmarz literature to prove our main result.172

We additionally describe a simple generalization of the main result in the case that the173

samples are not made according to the generalized SKM distribution (3.1), but instead ac-174

cording to a distribution p̃(τ) whose probabilities are at least a constant factor of those in175

(3.1). We also remark on the special case in which rows have equal norm (and thus subsets τ176

are selected uniformly at random), the case where βk is fixed, and the case in which βk = 1177

in order to make connections to previous results. Due to the dependence of the sampling dis-178

tribution upon the current iterate, our main result is not easily iterable to provide the usual179

form of a Kaczmarz type result (e.g., E‖ek‖2≤ αk‖e0‖2) so we present the bound for only a180

single iteration. However, in the special cases we describe in Remarks 2 and 3 we are able to181

iterate the simplified expression due to the simplicity of the sampling distribution.182

Theorem 3.1. Suppose the system of equations Ax = b is consistent, define x∗ = A†b, and183

let x0 ∈ range(A>). Then generalized SKM converges at least linearly in expectation and the184

bound on the rate depends on the dynamic range, γk of the random sample of βk rows of A,185

τk. Precisely, in the kth iteration of generalized SKM, we have186

Eτk‖xk − x∗‖2≤
(

1−
βk
(
m
βk

)
σ2min(A)

γkm
∑

τ∈([m]
βk

)‖at(τ,xk−1)‖2
)
‖xk−1 − x∗‖2.187

188

Proof. We begin by rewriting the generalized SKM iterate xk and simplifying the resulting189

expression which yields190

‖xk − x∗‖2 =
∥∥∥xk−1 − a>t(τk,xk−1)

xk−1 − bt(τk,xk−1)

‖at(τk,xk−1)‖2
at(τk,xk−1) − x∗

∥∥∥2191

= ‖xk−1 − x∗‖2−
(a>t(τk,xk−1)

xk−1 − bt(τk,xk−1))
2

‖at(τk,xk−1)‖2
192

= ‖xk−1 − x∗‖2−‖Aτkxk−1 − bτk‖2∞
‖at(τk,xk−1)‖2

,193

194

where the first equation uses the definition of the generalized SKM iterate, and the second
follows from the fact that a>t(τk,xk−1)

(xk−1 − x∗) = a>t(τk,xk−1)
xk−1 − bt(τk,xk−1). Note that

a>t(τk,xk−1)
x∗ = (AA†b)t(τk,xk−1) = bt(τk,xk−1)

since b ∈ range(A) and AA† is the projector onto range(A).195

Now, we take expectation of both sides (with respect to the sampled τk according to the196
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distribution (3.1)). This gives197

Eτk‖xk − x∗‖2 = ‖xk−1 − x∗‖2−Eτk
‖Aτkxk−1 − bτk‖2∞
‖at(τk,xk−1)‖2

198

= ‖xk−1 − x∗‖2−
∑

τ∈([m]
βk

)

pxk−1
(τ)
‖Aτxk−1 − bτ‖2∞
‖at(τ,xk−1)‖2

199

= ‖xk−1 − x∗‖2−
∑

τ∈([m]
βk

)

‖at(τ,xk−1)‖
2∑

π∈([m]
βk

)‖at(π,xk−1)‖2
‖Aτxk−1 − bτ‖2∞
‖at(τ,xk−1)‖2

(3.2)200

= ‖xk−1 − x∗‖2− 1∑
π∈([m]

βk
)‖at(π,xk−1)‖2

∑
τ∈([m]

βk
)

‖Aτxk−1 − bτ‖2∞201

= ‖xk−1 − x∗‖2− 1

γk
∑

π∈([m]
βk

)‖at(π,xk−1)‖2
∑

τ∈([m]
βk

)

‖Aτxk−1 − bτ‖2202

= ‖xk − x∗‖2−
(
m
βk

)
βk

γkm
∑

π∈([m]
βk

)‖at(π,xk−1)‖2
‖Axk−1 − b‖2203

≤
(

1−
(
m
βk

)
βkσ

2
min(A)

γkm
∑

π∈([m]
βk

)‖at(π,xk−1)‖2
)
‖xk−1 − x∗‖2,204

205

where the last line follows from standard properties of singular values and the fact that206

xk−1 ∈ range(A>) (since x0 ∈ range(A>) and the SKM update preserves membership in207

range(A>)). This completes our proof.208

Now, we provide a corollary of the previous result which provides a bound on the expected209

error for the SKM algorithm which samples subsets of rows τk according to an alternate210

probability distribution p̃(τ) satisfying p̃(τ) ≥ εpxk−1
(τ) for all τ ∈

([m]
βk

)
. In this case, we can211

exploit the relationship between probabilities to reuse the proof of Theorem 3.1. Provided212

that the probability distribution p̃(τ) is fixed between iterations we can iterate the bound213

unlike in Theorem 3.1. An application of Corollary 3.2 with the uniform distribution is given214

in Remark 1.215

Corollary 3.2. Suppose the system of equations Ax = b is consistent, define x∗ = A†b, and216

let x0 ∈ range(A>). Suppose one runs SKM with τk ∼ p̃(τ) and tk = t(τk,xk−1) and that the217

probabilities used to sample, p̃(τ), are at least a constant factor of the probabilities (3.1); that218

is p̃(τ) ≥ εpxk−1
(τ) for all τ ∈

([m]
βk

)
. Then we have that219

(3.3) Ẽτk‖xk − x∗‖2≤

1−
ε
(
m
βk

)
βkσ

2
min(A)

γkm
∑

π∈([m]
βk

)‖at(π,xk−1)‖2

 ‖xk−1 − x∗‖2220

where Ẽτk denotes expectation taken with respect to the sampling of τk according to p̃(τ) and221

conditioned on the choices of τj for j < k. Furthermore, if p̃(τ) is constant between iterations222
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(so βj = β is constant) and independent of xk−1, we can iterate the previous result and have223

(3.4) Ẽ‖xk − x∗‖2≤
k∏
j=1

1−
ε
(
m
β

)
βσ2min(A)

γjm
∑

π∈([m]
β )‖at(π,xj−1)‖2

 ‖x0 − x∗‖2224

where Ẽ denotes expectation taken with respect to all samples of τj for j = 1, ..., k.225

Proof. This proof is identical to that of Theorem 3.1 but where we first replace Eτk with226

Ẽτk and pxk−1
(τ) with p̃(τ). We replace the equation in (3.2) with an inequality and must227

add an ε to the numerator of the subtracted term in each line from (3.2) on. The iterated228

bound follows from recursively applying the bounds on the conditional expectations of each229

iteration.230

Remark 1. (Uniform probability distribution) We consider the case of the uniform distri-
bution over samples, i.e., p̃(τ) = 1/

(
m
βk

)
. We note that since

mini∈[m]‖ai‖2(
m
βk

)
maxi∈[m]‖ai‖2

≤ pxk−1
(τ) ≤

maxi∈[m]‖ai‖2(
m
βk

)
mini∈[m]‖ai‖2

when mini∈[m]‖ai‖2> 0, we have

p̃(τ) ≥
mini∈[m]‖ai‖2

maxi∈[m]‖ai‖2
pxk−1

(τ).

Thus, Corollary 3.2 holds for the uniform distribution with ε = mini∈[m]‖ai‖2/maxi∈[m]‖ai‖2.231

We note that this additionally provides a convergence analysis for RK of [60] in the case that232

the matrix A has unnormalized rows and the uniform distribution over rows is employed in233

sampling.234

The next remarks make simplifying assumptions on the generalized SKM algorithm and235

our main result to provide better context for comparison with previous works.236

Remark 2. (Recovery of RK guarantees) If all of the rows of A have equal norm (not237

necessarily unit norm), then our result specializes to238

(3.5) Eτk‖xk − x∗‖2≤
(

1− βkσ
2
min(A)

γk‖A‖2F

)
‖xk−1 − x∗‖2,239

and we can iteratively apply this per-iteration guarantee to give a bound on the error in ex-240

pectation with respect to all samples,241

(3.6) E‖xk − x∗‖2≤
k∏
j=1

(
1− βjσ

2
min(A)

γj‖A‖2F

)
‖x0 − x∗‖2.242

Additionally, when βk = 1, the sampling distribution (3.1) and theoretical error upper bound (3.5)243

simplifies to the probability distribution and error guarantees of [60].244
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Remark 3. (Improvement of MM guarantees) Corollary 2.1 is obtained from Theorem 3.1245

when rows of A have unit norm and βk = β. When βk = m, then an improved convergence246

rate of247

‖xk − x∗‖2≤
(

1− σ2min(A)

γk

)
‖xk−1 − x∗‖2≤

k∏
j=1

(
1− σ2min(A)

γj

)
‖x0 − x∗‖2,248

for MM over that shown in [31],249

‖xk − x∗‖2≤
(

1− σ2min(A)

4γk

)
‖xk−1 − x∗‖2≤

k∏
j=1

(
1− σ2min(A)

4γj

)
‖x0 − x∗‖2,250

is obtained.251

Remark 4. (Connection to Block RK) Note that this bound on the convergence rate of
SKM additionally provides a bound on the convergence rate of a block Kaczmarz variant.
This variant is distinct from the block Kaczmarz method considered in [52]. The analysis of
[52] requires a pre-partitioned row paving, while the variant considered here allows the blocks
to be sampled randomly and not pre-partitioned. Consider the block Kaczmarz variant which
in each iteration selects a block of βk rows of A, τk, and projects the previous iterate into the
solution space of the entire block of βk equations. This variant necessarily converges faster
than SKM as it makes more progress in each iteration. In particular, note that {x|Aτkx =
bτk} ⊂ {x|aTt(τk,y)x = bt(τk,y)}. Given iterate xk−1 and sample of rows τk, let xSKM

k denote the

iterate produced by SKM and xBK
k denote the iterate produced by this block Kaczmarz variant.

Note that xSKM
k is the closest point to xk−1 on the hyperplane associated to equation t(τk,xk−1)

so, since xBK
k also lies on this hyperplane, we have

‖xSKM
k − xk−1‖2≤ ‖xBK

k − xk−1‖2.

Now, we note that by orthogonality of the projections, we have

‖xSKM
k − xk−1‖2+‖xSKM

k − x∗‖2= ‖xk−1 − x∗‖2= ‖xBK
k − xk−1‖2+‖xBK

k − x∗‖2

so by the above inequality, we have

‖xBK
k − x∗‖2≤ ‖xSKM

k − x∗‖2.

A visualization of this situation is presented in Figure 3.1. Thus, the progress made by BK252

in any fixed iteration is at least as large as the progress made by SKM, so it must converge at253

least as quickly.254

One may be assured that the contraction term in Theorem (3.1) is always strictly positive.255

We prove this simple fact in Proposition 3.3.256

Proposition 3.3. For any matrix A defining a consistent system with x∗ = A†b and xj−1 ∈
range(A>), we have

γj ≥
βj
(
m
βj

)
σ2min(A)

m
∑

τ∈([m]
βj

)‖at(τ,xj−1)‖2
.

257
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12 J. HADDOCK AND A. MA

Figure 3.1: The SKM and BK iterates, xSKM
k and xBK

k , generated by one iteration starting at
xk−1 satisfy ‖xBK

k − x∗‖2≤ ‖xSKM
k − x∗‖2.

Proof. Beginning with the definition of γj , we have258 ∑
τj∈([m]

βj
)‖Aτjxj−1 − bτj‖2∑

τj∈([m]
βj

)‖Aτjxj−1 − bτj‖2∞
=

βj
m

(
m
βj

)
‖A(xj−1 − x∗)‖2∑

τj∈([m]
βj

)|a
>
t(τj ,xj−1)

(xj−1 − x∗)|2
259

≥
βj
m

(
m
βj

)
σ2min(A)‖xj−1 − x∗‖2∑

τj∈([m]
βj

)‖at(τj ,xj−1)‖2‖xj−1 − x∗‖2
260

=
βj
(
m
βj

)
σ2min(A)

m
∑

τ∈([m]
βj

)‖at(τ,xj−1)‖2
,261

262

where the inequality follows from properties of singular values and Cauchy-Schwartz.263

Because Theorem 3.1 shows that the contraction coefficient for generalized SKM is depen-264

dent on the dynamic range, the following section discusses bounds on the dynamic range for265

special types of linear systems.266

4. Analysis of the Dynamic Range. Since the dynamic range plays an integral part in the267

convergence behavior for generalized SKM, the dynamic range is analyzed here for different268

types of specialized linear systems. Note that the dynamic range has also appeared in other269

works, although not under the guise of “dynamic range”. For example, in [6] the authors270

proposed a Greedy Randomized Kaczmarz (GRK) algorithm that finds a subset of indices to271

randomly select the next row to project onto. The operation of finding this subset relies on a272
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ratio between the `∞ and `2 norms of the residual at the current iteration, essentially using273

a proxy of the dynamic range. In the next section, we analyze the dynamic range for random274

Gaussian linear systems and remark on the extension to other random linear systems. In the275

following section, we analyze the dynamic range for linear systems encoding average consensus276

problems on undirected graphs via the incidence matrix.277

4.1. Gaussian Matrices. When entries of the measurement matrix A are drawn i.i.d. from278

a standard Gaussian distribution, it can be shown that the dynamic range is upper bounded279

by O(nβ/log β). The proof of the upper bound of γk is similar to Lemma 2 of [31], where the280

authors analyze the dynamic range for β = m. Here, we generalized the bound for varying281

samples sizes βk.282

Proposition 4.1. Let A ∈ Rm×n be a random Gaussian matrix with aij ∼ N (0, σ2). For283

each subset τ ∈
([m]
βk

)
, let Iτ ⊆ τ denote the set of rows in τ that are independent of x and note284

|Iτ |≤ βk. Assuming there is at least m′ rows in [m] which are independent of x, the dynamic285

range can be upper bounded as:286

(4.1) γj =

∑
τ∈([m]

β ) Ea‖Aτx‖
2∑

τ∈([m]
β ) Ea‖Aτx‖

2
∞
≤

(
m
βk

) (
βkn+

∑
i∈τ\Iτ ‖ai‖

2/σ2
)

(
m′

βk

)
log(βk)

.287

Remark 5. Note that the factor
(
m
βk

)
/
(
m′

βk

)
is O(1) as m→∞ since288 (

m
βk

)(
m′

βk

) =
m!

βk! (m− βk)!
βk! (m− j − βk)!

(m− j)!
=

j∏
i=0

m− i
m− βk − i

.289

Thus, we conclude that the expected dynamic range for any iteration k is O(nβk/log(βk)).290

Proof. Without loss of generality, we let the solution to the system x∗ = 0 so that b = 0.291

We are then interested in finding an upper bound on the dynamic range (2.1) in expectation.292

Here, the expectation is taken with respect to the random i.i.d. draws of the entries of A.293

To that end, we derive upper bounds and lower bounds on the numerator and denominator294
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14 J. HADDOCK AND A. MA

of (2.1). Starting with the upper bound on the numerator we have295 ∑
τ∈([m]

βk
)

Ea‖Aτx‖2 ≤
∑

τ∈([m]
β )

∑
i∈τ

Ea
(
‖ai‖2‖x‖2

)
296

=
∑

τ∈([m]
βk

)

∑
i∈Iτ

Ea‖ai‖2‖x‖2+
∑
i∈τ\Iτ

‖ai‖2‖x‖2
297

=
∑

τ∈([m]
βk

)

∑
i∈Iτ

nσ2‖x‖2+
∑
i∈τ\Iτ

‖ai‖2‖x‖2
298

≤
∑

τ∈([m]
βk

)

βknσ2 +
∑
i∈τ\Iτ

‖ai‖2
 ‖x‖2299

=

(
m

βk

)βknσ2 +
∑
i∈τ\Iτ

‖ai‖2
 ‖x‖2300

301

where the first inequality follows from the Cauchy-Schwartz inequality and remaining compu-302

tation uses the fact that Ea‖ai‖2= nσ2 and simplifies the expression. The lower bound follows303

from304 ∑
τ∈([m]

β )

Ea‖Aτx‖2∞ =
∑

τ∈([m]
β )

Ea max
i∈τ
〈ai,x〉2 ≥

∑
τ∈([m]

β )

Ea max
i∈Iτ
〈ai,x〉2305

≥
∑

τ∈([m]
β )

(
Ea max

i∈Iτ
〈ai,x〉

)2

≥
∑

τ∈([m]
β )

|Iτ |=βk

(
Ea max

i∈Iτ
〈ai,x〉

)2

306

≥
∑

τ∈([m]
β )

|Iτ |=βk

σ2‖x‖2log(βk)307

≥
(
m′

βk

)
σ2‖x‖2log(βk),308

309

where the second to last inequality uses the fact that for i.i.d. Gaussian random vari-310

ables g1, g2, ...gN ∼ N (0, σ2), we have that E(maxi∈[N ] gi) & σ
√

logN and that 〈ai,x〉 ∼311

N (0, σ2‖x‖2). Therefore, we have312

γk =

∑
τ∈([m]

β ) Ea‖Aτx‖
2∑

τ∈([m]
β ) Ea‖Aτx‖

2
∞

313

≤

(
m
βk

) (
βknσ

2 +
∑

i∈τ\Iτ ‖ai‖
2
)

(
m′

βk

)
σ2 log(βk)

.314

315
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Figure 4.1: Dynamic ranges γk for various sample sizes βk. Left: Gaussian matrix A ∈
R50000×500 and Gaussian error ek ∈ R500 (red). Conjectured bound is plotted in blue. Right:
Incidence matrix Q ∈ R44850×300 for complete graph K300 with Gaussian error ek ∈ R300 (red)
and a sparse error ek with Bernoulli random variable entries (blue). Bounds are plotted in
the same colors with different line styles.

Dividing all terms by σ2 attains the desired result (4.1).316

We conjecture that the true bound is actually O(βk/log(βk)) and that the n is an artifact317

of our proof technique; throughout our experiments varying n (and for various m), we have not318

found any dependence of γk on n. For this reason, we have plotted γk and the corresponding319

conjectured bound in the left of Figure 4.1 for a Gaussian matrix of size 50000× 500.320

Remark 6. To extend to other distributions, one can simply note that as the signal dimen-321

sion n gets large, the Law of Large numbers can be invoked and a similar computation can be322

used to show an upper bound on the dynamic range of the system.323

With this estimate for γk, one can now ask for the optimal choice for βk in terms of
computational time. We can use Theorem 3.1 to estimate the expected number of SKM
iterations required so that ‖xk − x∗‖2/‖x0 − x∗‖2≤ ε for ε < 1; assuming that A is row
normalized, we expect this relative error stopping threshold is reached for number of iterations

k ≥ log(ε)

log

(
1− βkσ

2
min

(A)

γkm

) .

To estimate the optimal parameter βk, we must have an accurate estimate for computational
effort of each SKM iteration with sample size β. We first use an estimate for FLOPS required
in each iteration of SKM as a proxy for computational time (which is notoriously difficult
to estimate); the per-iteration flop requirement for each iteration of SKM is O(nβk + n).
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16 J. HADDOCK AND A. MA

Therefore, the required FLOPS to reach relative error threshold ε is

(nβk + n) log(ε)

log

(
1− βkσ

2
min

(A)

γkm

) ≈ (nβk + n) log(ε)

log

(
1− log(βk)σ

2
min

(A)

nm

) ,
where we have used the estimate γk ≈ nβk/log(βk). This estimate is plotted for a variety of324

sample sizes βk for a row-normalized Gaussian matrix A ∈ R50000×500 with ε = 10−4 (solid red325

line) in Figure 4.2a ; we additionally plot (nβk+n)kemp where kemp is the number of iterations326

empirically required to reach relative error stopping threshold ε = 10−4 (dashed blue line).327

We next estimate computational time required per iteration as the average CPU time for
a single iteration of an empirical trial of SKM, tβk . We estimate the required CPU time to
reach relative error threshold ε as

tβk log(ε)

log

(
1− βkσ

2
min

(A)

γkm

) ≈ tβk log(ε)

log

(
1− log(βk)σ

2
min

(A)

nm

) .
This estimate is plotted for a variety of sample sizes βk for a row-normalized Gaussian matrix328

A ∈ R50000×500 with ε = 10−4 (solid red line) in Figure 4.2b; we additionally plot the total329

CPU time empirically required to reach relative error stopping threshold ε = 10−4 (dashed330

blue line). We note that the estimated optimal choice for βk differs given the estimates of331

per-iteration computational burden. This is to be expected as our estimate for FLOPS per332

SKM iteration ignores computational overhead and communication time that contribute to333

the CPU time.334

(a) Estimate of theoretically required and em-
pirically required FLOPS.

(b) Estimate of theoretically required and em-
pirically required CPU time.

Figure 4.2: Comparison of theoretically and empirically required FLOPS and CPU time to
reach given relative error stopping threshold and estimate of optimal βk for Gaussian system
defined by row-normalized A ∈ R50000×500, averaged over five independent trials.
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This estimate of the optimal choice for βk for a given system was dependent upon having an335

estimate for γk that is fixed between iterations and does not depend upon the current iterate.336

Gaussian systems are the only type where we have such an estimate; in the next section,337

we provide a bound for systems defined by incidence matrices, but this bound is iterate-338

dependent. When there is no iteration-consistent estimate for γk, one can attempt to choose339

the optimal βk using an estimate for γk based on the sampled portion of the residual. We340

take this naive, empirical approach in Section 5 and call this selection strategy ‘useDynRng’.341

4.2. Incidence Matrices. In the previous subsection, we analyzed the dynamic range for342

systems with measurement matrices that are randomly generated. Deterministically generated343

measurement matrices are additionally of interest. In this subsection, we analyze the dynamic344

range associated to incidence matrices of undirected graphs, G = (V, E). The incidence matrix345

Q associated to an undirected graph is of size |E|×|V|. For each edge, (i, j) ∈ E which connects346

vertex i to vertex j, the associated row of Q is all zeros with a one and negative one in the347

ith and jth entries. These types of matrices arise in one formulation of the average consensus348

problem as a system of linear equations.349

The average consensus problem on a graph asks that all nodes on the graph learn the aver-350

age value of initial, secret values held by each node using only local information; that is, each351

node i initially knows ci and at solution they should all know 1
|V|
∑

i∈V ci with communication352

only across edges. This problem models computation in many real life applications such as353

clock synchronization [23], localization without GPS [67], distributed data fusion in sensor354

networks [66], and load balancing [17]. Many analyses of (asynchronous and synchronous)355

distributed methods for this problem exploit its formulation as a system of linear equations.356

The problem over a directed graph may be formulated as a linear system using either the357

incidence matrix (described above) or the Laplacian matrix, L = D−A where D is the diag-358

onal matrix of node degrees and A is the adjacency matrix, or more generally as an average359

consensus system defined in [39].360

The gossip methods that solve the average consensus problem are generalized by the Kacz-361

marz methods [43]. Early work making this connection focused on the formulation of the362

average consensus problem as a Laplacian system [69], but subsequent work generalized this363

connection to systems formulated more generally [39]. RK specializes to the randomized gossip364

method in which the pair of nodes which update are selected at random [65, 11]. The connec-365

tion between gossip methods and other Kaczmarz variants have been observed; the connection366

to block methods was noted in [39], extended methods in [69], and accelerated methods in367

[41, 38]. This connection has also spawned new gossip methods; in [34] the authors propose a368

privacy preserving gossip method, and in [5], the authors propose an accelerated, decentral-369

ized gossip method. In [43], the authors summarize many of these advances and connections370

between the Kaczmarz literature and gossip literature. They first noted and exploited the371

fact that SKM specializes to a variant of greedy gossip with eavesdropping (GGE) in which372

the nodes are selected from amongst a random sample to maximize the update [63]. By uti-373

lizing the connection noted between GGE and SKM in [43] and with some adjustments to374

the method and theoretical setup here (namely sampling according to the connectivity of the375

network and redefining the dynamic range accordingly), the approach for proving our main376

convergence rate can be employed in proving a similar convergence rate for GGE.377
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Now, we consider the dynamic range for an incidence matrix. We can derive a simple378

bound on the dynamic range in each iteration that depends only upon the entries of the379

current error vector, ek := xk − x∗. In particular,380

381

(4.2) γk =

∑
τ∈([m]

βk
)‖Qτek

‖

2 ∑
τ∈([m]

βk
)

‖Qτek‖2∞=

(
m
βk

)βk
m

∑
(i,j)∈E(e

(i)
k − e

(j)
k )2∑

τ∈([m]
βk

) max(i,j)∈τ (e
(i)
k − e

(j)
k )2

382

≤
βk(m− βk + 1)

∑
(i,j)∈E(e

(i)
k − e

(j)
k )2

m
∑|E|

n=βk
(e

(ni)
k − e(nj)k )2

,383

384

where ni and nj denote the vertices connected by the nth smallest magnitude difference385

across an edge. This bound improves for iterates with a sufficient amount of variation in the386

coordinates. We have plotted γk and the corresponding bounds in the right of Figure 4.1. We387

calculate these values for the incidence matrix Q ∈ R44850×300 of the complete graph K300 in388

the cases when the error is a Gaussian vector (red) and a Bernoulli vector (blue).389

Proposition 4.2. If the right-hand-side vector associated to the system Qx = b is b = 0,
as in the average consensus problem, then this bound on the dynamic range is easily computed
from the current iterate,

γk ≤
βk(m− βk + 1)

∑
(i,j)∈E(x

(i)
k − x

(j)
k )2

m
∑|E|

n=βk
(x

(ni)
k − x(nj)k )2

.

Remark 7. We note that this bound on the dynamic range holds for any incidence matrix390

Q, including those associated with directed graphs. In the case of directed graphs, however,391

additional assumptions must be made to ensure the well-posedness of the average consensus392

problem. Additionally, the Kaczmarz methods must be altered to ensure communication in393

only one direction along edges for directed graphs. Analyses of regular Kaczmarz methods,394

such as RK or SKM, do not apply to average consensus systems on directed graphs. We leave395

consideration of Kaczmarz type methods for this variant of the average consensus problem to396

future work.397

5. Experiments. In this section, we present simulated and real world experiments using398

SKM for varying sample sizes β. In the simulated experiments, we compare the theoretical399

convergence guarantees to the empirical performance of SKM, measured by approximation400

error ‖ej‖2, averaged over 20 random trials. The number of rows m = 50000 and number401

of columns n = 500 are fixed for all simulated experiments. The solution to the system is a402

vector x∗ ∈ Rn where each entry is drawn i.i.d. from a standard Gaussian distribution. In403

each experiment, the systems are consistent so that b = Ax∗. The sample sizes considered for404

this experiment are β = {1, 100, 200, 500, 1000}. Unless otherwise stated, the rows of A are405

uniformly selected without replacement. The experiments presented in this section were are406

performed in MATLAB 2017b on a MacBook Pro 2015 with a 2.7 GHz Dual-Core Intel Core407

i5 and 8GB RAM. For practical reasons, we normalize the rows of A and utilize the bound408

shown in Corollary 2.1.409
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Figure 5.1: Comparison of SKM for various choices of fixed β values on linear system with
entries of A drawn from i.i.d. from N (0, 1). (left) Iteration vs Approximation Error with
dashed lines representing average empirical performance of SKM and solid lines representing
theoretical upper bounds for SKM. (middle) FLOPS vs Approximation Error. (right) CPU
time vs Approximation Error

Figure 5.1 and Figure 5.2 show the results for Gaussian and Uniform random matrices A410

respectively. For Gaussian random matrices, each entry of A is drawn i.i.d. from a standard411

Gaussian distribution. For Uniform random matrices, entries of A are drawn i.i.d. uniformly412

from the interval [0, 1]. In each figure, we plot along the horizontal axis the (left subplot)413

iteration, (middle subplot) FLOPS or floating point operations, and (right subplot) CPU414

time in seconds. The vertical axis for all plots indicate the average approximation error across415

random trials. Note that the left most subplot for both figures also contains a solid line, which416

indicates the theoretical upper bound of the algorithm provided by Corollary 2.1.417

For linear systems with Gaussian random matrices, we see in Figure 5.1 that the conver-418

gence upper bound proven in this work closely matches the behavior of the SKM algorithm419

regardless of the choice of sample size β. To compare this result to previous works, note that420

when β = 1, the upper bound provided in Corollary 2.1 simply recovers the previous known421

upper bound for SKM with normalized rows, a bound which was completely independent of422

β. In other words, the solid red line is the comparative previous known SKM upper bound423

for all β.424

Of course, choices of large sample sizes β come at a cost, which are captured in the middle425

and right most subplots of Figure 5.1. When measuring efficiency, it seems that β = 1 makes426

the most progress with minimal FLOPS while β = 100 is optimal amongst the tested sample427

sizes with respect to CPU time. This difference is typically explained by the programming and428

computer architecture (e.g., it may be more efficient to work on batches of rows as opposed429

to single rows at a time).430

Figure 5.2 uses a uniform random matrix A instead of a Gaussian random matrix. While431

the algorithm efficiency with respect to FLOPS and CPU time have similar conclusions to432

those in the Gaussian measurement matrix case (as one would expect), the iteration vs ap-433

proximation error plot now tells a different story. Unlike in the Gaussian case, the theoretical434

upper bound no longer closely tracks the approximation error of SKM. The looseness here435

comes from lower bounding the norm of ‖Ax‖22 with the magnitude of x times the smallest436
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Figure 5.2: Comparison of SKM for various choices of fixed β values on linear system with
entries of a A drawn from unif([0, 1]). (left) Iteration vs Approximation Error with dashed lines
representing average empirical performance of SKM and solid lines representing theoretical
upper bounds for SKM. (middle) FLOPS vs Approximation Error. (right) CPU time vs
Approximation Error

nonzero singular value of A squared. Empirically, we have seen that this lower bound is437

tighter for Gaussian systems than Uniform systems. It should be noted that even though our438

theoretical bounds do not track the approximation error for SKM as tightly, they are still a439

slight improvement over the previous known bounds for SKM.440

In addition to being an improvement over the previously known SKM bound, the con-441

vergence bound shown in this work enjoys the flexibility of being amenable to a dynamically442

selected sample size βk. Figure 5.3 and Figure 5.4 show the empirical results from experiments443

where βk is allowed to change at every iteration. In Figure 5.3 the measurement matrix A444

is again a random Gaussian matrix and in Figure 5.4 the measurement matrix entries are445

drawn i.i.d. from Unif([0, 1]). We consider three sampling regimes that change βk at every446

iteration: ‘useDynRng’ which allocates βk as a function of the dynamic range, ‘slowInc’ which447

increases βk at every iteration until βk = m, and finally ‘rand’ which uniformly at random448

selects a βk ∈ [m] at every iteration. More specifically, the ‘useDynRng’ uses the heuristic449

βk = dmax(m,
m‖Aτk−1

xk−1−bτk−1
‖∞

n‖Aτk−1
xk−bτk−1

‖2 )e. Note that this choice of βk relies directly on the inverse450

of an approximation of the dynamic range γk computed without incurring additional compu-451

tational cost, in a naive attempt to optimize the contraction term of the theoretical bound452

for SKM. Even though βk changes at each iteration, we see that the theoretical guarantees453

proven in this work still track the progress of SKM. This indeed opens up new and interesting454

avenues of research including how one can compute an optimal βk at every iteration. Since455

the focus of this work is the improvement of the convergence bound of SKM, we leave this for456

future work.457

Figure 5.5 employs the upper bound on the dynamic range derived in Proposition 3.3 to458

approximate an upper bound for the error of SKM iterates when β = 100. Here, we compare459

the empirical performance of SKM with its previous known upper bound using the contraction460

term 1− σ2
min
m and 1− log(β)σ2

min
m . Note that we drop the factor of n apparent in Proposition 3.3461

as we suspect it to be an artifact of the proof technique used and conjecture that the true462
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Figure 5.3: Comparison of SKM for various choices of dynamically selected βk values on linear
system with entries of A drawn from N (0, 1).

Figure 5.4: Comparison of SKM for various choices of dynamically selected βk values on linear
system with entries of A drawn from Unif([0, 1]).

upper bound of the dynamic range is actually O(β/log(β)).463

In both the Gaussian and Uniform synthetic experiments, the row norms of A are of simi-464

lar magnitude on average and thus choosing βk rows of the measurement matrix uniformly at465

random will behave similarly to the theoretically imposed probability distribution introduced466

in (3.1). In the next experiment, we consider a setting where the entries of the measurement467

matrix are aij ∼ N (0, i/
√
n) so that for each row, E‖ai‖2= i. Since (3.1) is computationally468

impractical to implement, we will continue to select rows of A uniformly at random without469

replacement to evaluate the performance of SKM for various choices of β. The results of this470

experiment are presented in Figure 5.6. As in the previous synthetically generated experi-471

ments, m = 50000, n = 500, and the underlying signal x is a standard Gaussian random472

vector. Despite not sampling rows as imposed by (3.1), we see that SKM still converges with473

rates similar to those in Figure 5.1 and β = 100 outperforms the others with respect to CPU474

time.475

Next we move on to evaluate the performance of SKM on incidence matrices of graphs. We476

start with the the AC systems discussed in Section 4.2. Here, the graph G is a complete graph477

K100 with corresponding incidence matrix Q ∈ {−1, 0, 1}4950×100. The unknown underlying478

vector x ∈ R100 is x = µ̂1100 where 1100 is a 100-dimensional vector of ones and µ̂ is the479

This manuscript is for review purposes only.



22 J. HADDOCK AND A. MA

Figure 5.5: Comparison of SKM with β = 100 with previous known theoretical upper bounds
and our upper bound with conjectured Gaussian system dynamic range γk.

Figure 5.6: Comparison of SKM for various choices of fixed β values on linear system with
entries aij drawn from N (0, i/

√
n). (left) Iteration vs Approximation Error with dashed lines

representing average empirical performance of SKM and solid lines representing theoretical
upper bounds for SKM. (middle) FLOPS vs Approximation Error. (right) CPU time vs
Approximation Error

empirical average of 100 random draws from a standard normal distribution. The results of480

this experiment are provided in Figure 5.7.481

Figure 5.8 demonstrates the performance of SKM on a graph G which reflects a scale-free482

network, i.e., a graph whose degree distribution follows the power law. To create the graph, we483

employ the implementation of the Barabási-Albert (BA) model [3] with an initial graph of five484

vertices and ending with a graph of 300 vertices [24]. For more details on scale-free networks,485

see [3]. In Figure 5.8 we again observe exponential convergence in the mean approximation486

error and optimal performance with respect to CPU time when β = 10.487

In Figures 5.9a and 5.9b we present the performance of SKM for GGE problems (See Sec-488

tion 4.2). In such problems, instead of randomly selecting a subset of β rows of the incidence489

matrix of a graph uniformly, we randomly select a node (column), collect all rows correspond-490

ing to neighbors of said node (rows corresponding to nonzero entries in that column), and491
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Figure 5.7: Comparison of SKM for various choices of fixed β on AC systems. (left) Iteration
vs Approximation Error with dashed lines representing average empirical performance of SKM.
(middle) FLOPS vs Approximation Error. (right) CPU time vs Approximation Error

Figure 5.8: Comparison of SKM for various choices of fixed β on an incidence matrix of a
scale-free network. (left) Iteration vs Approximation Error with dashed lines representing
average empirical performance of SKM. (middle) FLOPS vs Approximation Error. (right)
CPU time vs Approximation Error

then of those rows, select the row that returns the max absolute residual value to project492

on. Note that here, the size of the subset varies at each iteration, depending on the size of493

the neighborhood of the randomly selected node. Since this is significantly different from the494

standard SKM selection scheme, we refer to this method as GGE-SKM. Figure 5.9a presents495

the computational results for an incidence matrix of a complete graph (system set up as in496

Figure 5.7) while Figure 5.9b does the same for an incidence matrix of a BA model graph497

(system set up as in Figure 5.8).498

Our last experiment demonstrates the performance of SKM with varying choices of β499

on real world data from the SuiteSparse Matrix Market [18]. For these experiments, we500

employ the ‘Maragal 4’, ‘well1850’, and ‘ash958’ matrices which are of dimension 1964×1034,501

1850 × 712, and 958 × 292 respectively. It is useful to note that ‘Maragal 4’ and ‘well1850’502

have low rank data structures. These matrices are used as the measurement matrix A and503

the underlying signal is arbitrarily chosen to be in the range of AT . Here, we allow SKM to504

run for a maximum of 106 iterations or terminate once the approximation error has reached505
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(a) Performance of CPU time vs Approxima-
tion Error of GGE-SKM on an incidence ma-
trix of a complete graph.

(b) Performance of CPU time vs Approxima-
tion Error of GGE-SKM on an incidence ma-
trix of a scale-free network.

Figure 5.9: Performance of GGE-SKM on GGE problem with two different graphs.

SKM β = 1 SKM β = 10
Error FLOPS CPU time Error FLOPS CPU time

Maragal 4 2.45 2.07e+09 176.25 0.164 1.13e+10 460.88

well1850 7.67 1.42e+09 112.75 0.064 7.83e+09 238.59

ash958 1.06e-06 4.91e+06 0.323 1.00e-06 5.33e+06 0.126

Table 5.1: Performance of SKM using β = 1 and β = 10 on real world data from SuiteSparse
Matrix Market.

the allotted error tolerance of 10−6. The results of using β ∈ {1, 10, 50} are presented in506

Table 5.1 and Table 5.2. We also included the performance of Conjugate Gradient Least507

Squares (GCLS) [10, 61] for comparison. Note that we do not claim to have optimized either508

implementation.509

Table 5.1 and Table 5.2 demonstrates that for a fixed number of iterations, increasing β510

results in a lower approximation error. It also highlights the trade off between the subset size,511

the FLOP cost, and the CPU time. As we increase β, in general, both the FLOP and CPU512

time increase as well. One interesting observation is that for the ‘ash958’ experiment, the513

optimal choice of subset size is β = 10 with respect to CPU time. This is further motivation514

for future work in optimal β selection. Finally, as expected, CGLS outperforms the three515

choices of β. However, SKM can be more naturally implemented in distributed computing516

settings. We leave that direction as an avenue for future work as well.517

6. Conclusion. This work unifies the spectrum between the randomized Kaczmarz and a518

greedy variant of the Kaczmarz (Motzkin’s Method) algorithm by improving the convergence519

bound of SKM, a hybrid randomized-greedy algorithm. We show that the behavior of SKM520
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SKM β = 50 CGLS
Error FLOPS CPU time Error FLOPS CPU time

Maragal 4 5.01e-02 5.27e+10 1593.4 3.97e-02 2.97e+07 5.41

well1850 2.49e-03 3.63e+10 1161 1.01e-06 4.06e+06 1.07

ash958 1.01e-06 1.44e+07 0.426 1.88e-06 41158 6.66e-3

Table 5.2: Performance of SKM using β = 50 and CGLS on real world data from SuiteSparse
Matrix Market.

depends on the sample parameter βk and the dynamic range of the linear system. This result521

improves upon previous work showing only the linear convergence of SKM. In presenting an522

improved convergence bound for SKM that highlights the impact of the sub-sample size βk, we523

have opened up new and exciting avenues for SKM-type algorithms. Future directions of this524

work include finding optimal sample sizes for different types of linear systems and designing525

adaptive sample size selection schemes.526
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