
User-Guided Synthesis of Interactive Diagrams
John Sarracino
UC San Diego

jsarraci@cs.ucsd.edu

Odaris Barrios-Arciga
Scripps College

obarrios1585@scrippscollege.edu

Jasmine Zhu
Harvey Mudd

jizhu@hmc.edu

Noah Marcus
Harvey Mudd

nmarcus@cs.hmc.edu

Sorin Lerner
UC San Diego

lerner@cs.ucsd.edu

Ben Wiedermann
Harvey Mudd

benw@cs.hmc.edu

ABSTRACT
Interactive diagrams are expensive to build, requiring sig-
nificant programming experience. The cost of building
such diagrams often prevents novice programmers or non-
programmers from doing so. In this paper, we present user-
guided techniques that transform a static diagram into an in-
teractive one without requiring the user to write code. We
also present a tool called EDDIE that prototypes these tech-
niques. We evaluate EDDIE through: (1) a case study in which
we use EDDIE to implement existing real-world diagrams
from the literature and (2) a usability session with target users
in which subjects build several diagrams in EDDIE and pro-
vide feedback on EDDIE’s user experience. Our experiments
demonstrate that EDDIE is usable and expressive, and that ED-
DIE enables real-world diagrams to be implemented without
requiring programming expertise.

Author Keywords
Interactive Diagrams; Program Synthesis

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; I.2.2. Automatic Programming: Program syn-
thesis

INTRODUCTION
Interactive diagrams are animated diagrams that users can
interact with using a computational device such as a computer
or tablet. For example, an interactive physics diagram with
pulleys and weights might allow the user to move the pulleys
and vary the weights, while observing the physical simulation
that ensues.

Developing an interactive diagram requires programming ex-
pertise with technologies like JavaScript, HTML5 and server-
side databases, and diagram authors might not have the level of
programming ability required to make an interactive diagram.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2017, May 06 - 11, 2017, Denver, CO, USA

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4655-9/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3025453.3025467

In this paper, we present USER-GUIDED INTERACTION SYN-
THESIS, a technique that bridges this gap by enabling users
to build good interactive diagrams without requiring any pro-
gramming knowledge. Instead of writing code directly to
implement an interactive diagram, users first make a static
version of the diagram and then our technique synthesizes (i.e.,
adds) interactivity automatically. This technique also allows
the author to visualize alternative interactivity models, so the
author can quickly explore the space of possible interactive
diagrams, and select and/or refine the ones that are the most
appropriate for the specific goals.

The main challenges in making program synthesis-based tech-
niques work are twofold: (1) usability/expressiveness and (2)
computational tractability. For the former, the synthesis lan-
gauage must be expressive and general enough to implement
a variety of interaction models, while succinct enough to be
amenable to synthesis and usable by non-programmers. For
the latter, even with a succinct intermediate representation
the search space is extremely large and underconstrained as
the number of possible programs that implement interactive
diagrams is unbounded and metrics for suitable interactions
vary among diagrams.

To address these problems, USER-GUIDED INTERACTION
SYNTHESIS makes use of the following two key ideas:

• Constraint-based formalism: This technique expresses
and runs interactive diagrams using a constraint-based for-
malism with dynamically-adjusted constraints. This addi-
tional structure more effectively explores the search space
of programs that implement interactive diagrams: instead
of looking at all possible programs, the search looks at all
possible constraints over a set of clearly defined variables.
Furthermore, dynamic constraints offer a succinct and nat-
ural way of capturing the variation in interactivity across
diagrams.

• User-guided preview-based synthesis: This technique em-
ploys a user-guided and interactive synthesis technique for
programs in the constraint-based formalism. It does not
rely on programming knowledge. Instead it uses a preview-
based approach where the diagram author is shown pre-
views of various interaction modalities, from which the
author can pick the best one. The preview-based technique
drastically reduces the user’s manual effort while also nar-
rowing down the search space.

http://dx.doi.org/10.1145/3025453.3025467

Using the above ideas, we built a diagram editor called EDDIE
(screenshot in Figure 1a) that implements USER-GUIDED
INTERACTION SYNTHESIS. To demonstrate feasibility on a
real-world application of interactive diagrams, we picked the
domain of physics education. As benchmarks we used the
interactive diagrams from the Physics Education Technology
project (PhET) [42]. We performed our evaluation along three
dimensions, expressiveness, utility, and usability.

For expressiveness and utility, we performed a case study in
which we used EDDIE to re-implement a variety of existing
PhET diagrams. Of the 11 existing PhET diagrams on gravity,
springs, and pendulum motion, EDDIE was able to generate
analogous versions for 9 of these 11 diagrams. Making these
diagrams with EDDIE took a few minutes of human effort
each. By comparison, these 11 benchmarks as implemented
in PhET each required an average of roughly 5000 lines of
expertly-written code.

For usability, we recruited a group of science teachers to author
two diagrams using EDDIE and provide feedback on their
experience. All of the participants were able to complete the
task within an hour, and none of the participants required
direct aid from the authors.

Our experiments demonstrate that EDDIE is usable and ex-
pressive, and that USER-GUIDED INTERACTION SYNTHESIS
allows real-world diagrams to be authored with much less
effort than the original diagrams.

In summary, our contributions are as follows:

• USER-GUIDED INTERACTION SYNTHESIS, a technique
that transforms a static diagram into an interactive one with-
out requiring the user to write code. The technique is sum-
marized in the Overview section.

• A constraint-based formalism for interactive diagrams, sum-
marized in the Interactive Diagrams using Constraints
section.

• A user-guided, preview-based synthesis engine for interac-
tive diagrams in the constraint-based formalism language,
discussed in the User-Guided Diagram Synthesis section.

• An implementation of USER-GUIDED INTERACTION SYN-
THESIS in a diagram editor named EDDIE, discussed and
evaluated in the Prototyping and Evaluation section.

• An evaluation of EDDIE on a case study of PhET interactive
physics diagrams, discussed in the Case Study subsection.

• An evaluation of EDDIE on a user insight survey of science
educators, discussed in the Usability: Teacher Usage and
Insights subsection.

RELATED WORK
Visual Editors. There is a long and rich line of work on
visual editors for diagrams, for example [29, 10, 26, 17, 55,
31, 52, 32, 51, 50]. To understand how our work fits into
this broad line of research, it’s important to first note that the
vast majority of prior editors (including all those cited above)
support either static or animated diagrams, but not authoring
of interactivity for the viewer, which is our main goal.

Much fewer editors support authoring of interactivity –
Kitty [30] and Apparatus [1] are the main examples in this
space. Our work is different from these editors in two ways.
First, our approach of encoding diagrams using constraints
and synthesizing the constraints automatically is novel. Sec-
ond, our tool requires much less expertise to use than prior
approaches. Consider for example Apparatus [1], which is a
direct-manipulation editor for authoring interactive dataflow
diagrams. While Apparatus is a powerful and sophisticated
system, to use Apparatus the author must first become familiar
with the tool’s dataflow programming paradigm. Consider as
another example Kitty [30], which is sketch-based project for
professional authoring of interactive animations. While Kitty
enables the diagram author to add end-user interactivity to an
animation, the author in Kitty must correctly express a global
interactivity modality as the composition of pairwise element
functional relationships.

In contrast to prior work, in our tool, the author must only: (1)
draw a static, non-animated diagram, in a style that is familiar
to many computer users (2) select between self-animating pre-
views. This is a substantially lower cognitive burden: in our
tool, the author has only two concepts to cognitively process
(static diagrams and previews of dynamic diagrams) whereas
in prior tools, the author must also process the language/mech-
anism for expressing interactivity (note that we have such a
mechanism—the constraint language—but we generate the
constraints automatically). We validate in our experiments that
users with no prior knowledge can quickly generate interactive
diagrams after just seeing a 15 minute demo.

There is however a key tradeoff here: while our approach
reduces the cognitive burden required to build interactive di-
agrams, we don’t provide the same expressiveness as prior
approaches (as we will discuss in the Limitations and Future
Work section). As such, our work complements prior work: we
provide good automation for a subset of all possible diagrams,
and authors can go to more complex techniques/approaches
for the rest.

Constraints in User Applications. Constraints have been
used for visual layout for many years, dating back to Sketch-
Pad [47]. More recent work uses constraints for GUI
builders [39, 38, 49], for user interactions [48], and as pro-
gramming paradigms [40, 18]. The DeltaBlue project [19]
coined the notion of an incremental constraint solver, which
can dynamically resolve a system when constraints are added
or removed. Our work presents an application of constraint
solving to the domain of interactive diagram synthesis: indeed,
our implementation uses Cassowary [4, 12], an incremental
constraint solver also used in Mac OS X.

Inference of Layout Constraints. Closely related to our
work is research on layout editors that use constraints in the
back-end, for example the work on Programming by Manip-
ulation for Layout [25] and The Auckland Layout Editor for
GUIs [54]. Our work is different in that, instead of just infer-
ring layout constraints, our work also infers (with the help of
a human) the constraints for interactivity: what happens when
control points in a diagram are dragged by a user.

Program Synthesis. Program Synthesis infers a program
from a partial program or a specification [21]. Synthesis is
hard because the search space is large, which is typically
addressed by limiting the domain language [22, 23, 46, 28,
41], cleverly enumerating programs [33, 53], or asking the
human for help [45]. The primary difference in our work
is that we apply synthesis-inspired techniques to the domain
of interactive diagrams. We narrow the search space by (1)
considering a constraint-based formalism whose structure we
can exploit and (2) asking the human to make key decisions.

Programming by Demonstration. Programming by Demon-
stration (PbD), also know as Programming by Example, builds
programs from example input-output pairs [15, 37]. PbD is
used in a variety of settings, such as generating web scripts
[34], building visual tutorials [20], and creating multi-touch
interactions [35]. In contrast to PbD, our approach does not
use example program input-output pairs.

Interactive Technical Diagrams. There has been a lot of
recent interest in digitizing figures and diagrams for STEM
education [24, 3]. A large and successful project integrating
computers with education is the Physics Education Technology
(PhET) project [42], which builds and evaluates interactive
diagrams for K-12 [8, 36, 43]. PhET’s diagrams require sig-
nificant programming expertise to build. The project employs
4 full-time software developers and states that each diagram
typically involves a software developer, a scientist, and an
educator [6]. Our contribution is to enable users with no
programming expertise to directly build interactive diagrams.

Interactive Diagram Toolkits. Kitty [30] is a sketch-based
project for professional authoring of interactive animations.
Kitty’s model of interaction is that of functional relationships
with one parameter, e.g., variable A as a function of variable B.
The functional relationship model fits well within the domain
of sketch-based animation authoring; however, many useful
diagrammatic relationships involve more than two variables
and so can’t be expressed with Kitty’s functional relationships.
In addition, users of Kitty must specify the functional rela-
tionship between each diagram element and the remaining
diagram elements, which leads to a quadratic growth in the
number of user-provided relationships. In contrast, our use of
constraints enables the technique to not only encode many use-
ful relationships between more than two variables, but to do
so very succinctly, without having to explicitly state pair-wise
relationships between all diagram elements.

Sketch-based Simulation Inference. Sketching is a body of
work focused on recognizing a simulation or animation from
a user’s diagrammatic sketch. By relying on properties of
particular domains, sketching has been applied effectively to
mechanical systems [10, 11], vector spaces [14], and fluid
simulations [55]. In addition, more general sketching systems
have also been developed [17, 27]. With the exception of
Kitty [30], sketching work builds non-interactive diagrams:
in contrast, we use program synthesis techniques to build
interactive diagrams.

OVERVIEW
We begin with an overview of how EDDIE works through an
example. There are two kinds of people who interact with ED-
DIE: users who build interactive diagram, which we will refer
to as authors from now on; and users who interact with inter-
active diagrams, which we will refer to as viewers from now
on. For a single diagram, EDDIE displays both perspectives
simultaneously (screenshot in Figures 1a) using two panes, a
left pane for the editing perspective of the author and a right
pane for previewing the perspective of the viewer. The left
author pane is akin to a traditional editor perspective, whereas
the right pane provides a live interactive preview that is con-
tinuously updated.

For our running example, suppose that an author wants to
build an interactive physics diagram depicting a platform with
a weight on top of a spring, as shown in Figures 1a and 1b.
The author places a weight (using an image link), a spring,
a rectangle for the platform, and a rectangle for the base in
the diagram by clicking the respective buttons in the “Shapes”
and “Physics” dropdown menus. Once the shapes are in the
diagram, the author uses the left pane of EDDIE to place the
shapes in the desired configuration (as shown in Figures 1a
and 1b). As the shapes are moved in the left author pane, the
shapes in the right viewer pane follow.

The author next adds viewer interactivity to the diagram. ED-
DIE enables viewer interactivity through draggable points
called drag points. Drag points are visible in the viewer’s
perspective (the right pane) and are draggable by the viewer.
For this diagram, the author desires two viewer interactions
through two drag points. First, when the viewer drags the
middle of the platform, the following should happen: (1) the
platform translates, but only in the Y dimension (2) the base
remains in place (3) the weight translates and (4) the spring
compresses/extends. Second, when the viewer drags the mid-
dle of the base, the entire diagram should translate in both
dimensions.

To add these interactions, the author must first specify where
drag points are located. This is done by clicking “Interaction”,
which displays all candidate drag points in the author pane.
The author can then enable the desired drag points by clicking
on them (clicking again disables the drag point). In the running
example, the author selects the two desired drag points, in the
middle of the weight and in the middle of the base, as shown
in Figure 1b.

For each enabled drag point in the author pane, EDDIE auto-
matically generates a tentative interaction modality. At this
point, the author can interact with the diagram in the viewer
pane and see what interaction modalities EDDIE has picked.
Interacting with the diagram, the author notices that the drag
point on the base translates the entire diagram, exactly as the
author intended. The drag point on the weight moves the
weight and platform and stretches the spring in both the X
and Y dimensions, which—although a valid interaction—is
not what the author intended. Instead, the author intended the
weight and platform to ignore viewer input in the X dimension,
i.e., to only translate and stretch in the Y dimension.

(a) (b) (c)

Figure 1: Screenshots of EDDIE: (a) the main view, with left editing pane and right preview pane (b) drag point selection view,
with selected points in orange and unselected ones in black (c) animated preview pane—this particular interaction adjusts the
spring’s height and width to match the movement of the platform.

To change the interaction of the drag point on the weight, the
author right-clicks the drag point in the author pane. EDDIE
generates a list of valid interaction modalities for this drag
point and displays this list in a preview window. The preview
window shows an animated preview of the currently selected
modality, along with “left” and “right” arrows to navigate
through the list of animated previews. Each animated pre-
view is self-animating, in that it shows what would happen
if a viewer were to drag the drag point in a circular pattern.
Figure 1c shows a static snapshot of such a self-animating
preview. The circle and arrows are not part of the preview –
they are used in Figure 1c to explain what path the drag point
takes during the animation. These self-animating previews
enable the author to quickly flip through many possible viewer
interactions. In the running example, the author clicks “right”
several times until the correct version is shown. The author
then clicks “accept” to use this interaction modality.

The author now interacts again with the diagram in the viewer
pane, and sees that the drag point on the base has the desired
viewer interactivity. Furthermore, the author also tries the
simulation component of the diagram in the viewer pane (the
spring contains its own physical properties), and makes sure
that the diagram works as intended. The diagram is now
complete.

Overview of USER-GUIDED INTERACTION SYNTHESIS.
So far, this overview focused on a description of EDDIE from
the perspective of the author and omitted technical details of
the technique underlying EDDIE. EDDIE uses a technique
we call USER-GUIDED INTERACTION SYNTHESIS, which
broadly speaking works as follows. First, interactive diagrams
are represented in an intermediate language in two parts: a
symbolic description of the shapes and a constraint-based
formulation of interaction modalities. Second, given a static
diagram, which contains shape descriptions and locations of
drag points (with no interactivity), a synthesis algorithm gen-
erates an ordered list of interaction modalities for each drag
point, in which each interaction modality is represented by a
set of constraints governing that point’s motion. Third, the

author is able to preview all the interaction modalities by right-
clicking on a drag point, and selecting from a list of animated
previews. The rest of this paper explains these technical details
in more depth. The next section (Interactive Diagrams Using
Constraints) shows how to encode interactive diagrams using
constraints, and the following section (User-Guided Diagram
Synthesis) describes our synthesis algorithm and previewing
approach.

INTERACTIVE DIAGRAMS USING CONSTRAINTS
USER-GUIDED INTERACTION SYNTHESIS uses a constraint
formalism to encode interactive diagrams. We first present
background material on constraint systems and then we show
how to use constraints to encode a given interactive diagram.

Background on Linear Constraint Systems
A linear constraint is a linear equality over variables, in this
case floating-point variables. For example, y = 3x and t = 2
are linear constraints, while x2 + y2 = 3 is not. A linear
constraint solver takes a set of linear constraints and attempts
to produce a valuation of constraint variables that satisfies the
input constraints. If the input constraints are not solvable, e.g.,
x = 2 and x = 3, the constraint solver produces a variable
valuation that minimizes an error metric, typically a weighted
sum of violated constraints. Linear constraint solving is an
example of linear programming, which is typically solved
using Dantzig’s classic simplex algorithm [16] or a variant
thereof.

This work uses a specific kind of constraint solver, namely an
incremental constraint solver [19]. Such constraint solvers
are designed specifically for interactive domains, including
graphical applications, and are typically used in the following
way. First, the layout of graphical objects on the screen is
encoded using a set of constraints. Then, each time the viewer
moves an object on the screen, the constraints are solved again
to re-compute the layout of objects. A prominent example
of such a constraint solver is the Cassowary [12] constraint
solver, which we use in our implementation of EDDIE (and
which is also used in the layout engine for Mac OS X).

Interactive constraint solvers have two features specifically de-
signed for interactive graphical applications: stay constraints
and edit constraints.

A stay constraint is a constraint of the form Stay(v), where v
is a variable. This constraint tells the constraint solver that the
next time it is invoked to solve the constraints, the variable v
should remain the same as its old value. This is useful because
in most cases there are many solutions to the constraints, and
the stay constraints enable an algorithm to state that for certain
variables, all else being equal, they should remain unchanged.

An edit constraint is a constraint of the form Edit(v = c)
where v is a variable and c is a numerical constant. This
constraint acts exactly like the regular constraint v = c, except
that after the solver is done solving the constraints, it deletes
the edit constraint. Edit constraints are used to encode changes
due to viewer input. For example, if the viewer moves an
object horizontally on the screen to a new position, one would
create an edit constraint to temporarily set the X variable for
that object to be the new position. The solver then solves the
constraints (including the edit constraint) to find a new layout,
after which the edit constraint is automatically removed. At
this point the viewer’s input has been incorporated into the
current values of the variables, and so there is no need to keep
the edit constraint around.

Finally, constraint solvers also have a way of prioritizing
constraints. This is typically done by assigning constraints
weights, and the constraint solver tries to minimize the sum
of the weights of violated constraints. This prioritization fea-
ture is a side effect of the fact that these solvers typically use
Simplex, which similarly solves constraints by minimizing
the weighted sum of violated constraints. Despite being an
implementation detail of the solver’s algorithm, prioritization
can be useful for interactive user applications.

Interactive Diagrams using Constraints
Now that we have covered background material on constraint
systems, we show how to encode a particular interactive dia-
gram using constraints. At this point, we are not yet concerned
with synthesis of interactive diagrams (i.e., synthesis of the
constraints)—we are simply showing how to encode a single
interactive diagram using constraints. In the Synthesis sec-
tion, we will show how to synthesize an interactive diagram by
exploring a set of interactive diagrams and selecting the best
one using feedback from the author.

In our technique, interactive diagrams have two components:
(1) a shape description section, which states what shapes are
in the diagram, and (2) a constraint section, which describes
relationships between shapes as linear constraints. Figure 2
shows some examples of the shape primitives used in the
shape description section, along with their graphical represen-
tation. The parameters to these shape primitives are constraint
variables, which we call control variables; the relationships
between these control variables are stated by equations in the
constraint section.

We now describe the three different kinds of constraints and
how they are used.

(X, Y)

(X, Y)

(X, Y)

H

W

(X1, Y1)

(X2, Y2)

R

W

H

Line(X1, Y1, X2, Y2)

Rect(X, Y, H, W)

Vec(X, Y, H, W)

Circ(X, Y, R)

Figure 2: Example primitives for the shape description section.
EDDIE also supports Images and Springs, which are analogous
to Rectangles and Vectors respectively.

Layout Constraints. Layout constraints are linear equations
over control variables which encode layout invariants that must
remain true as the diagram is re-configured based on viewer
actions. For example, one could state that two rectangles are
always centered at the same location by equating their X and
Y control variables; one could state that a spring is connected
to the corner of a rectangle by equating the spring’s end-point
to an expression that corresponds to the rectangle’s corner.

Taken in isolation, the layout constraints are usually under-
constrained, meaning that there are many possible solutions.
We address this in the standard way by adding stay constraints
over all control variables. Although staying all control vari-
ables seems like it might pin the diagram and prevent it from
moving, we will next describe how interactive changes happen
to the diagram.

Interactivity Constraints. Whereas layout constraints cap-
ture layout invariants that must always be met, interactivity
constraints are edit and stay constraints that capture interaction
modalities. A viewer can interact with a diagram through drag
points, which we capture using a primitive Drag(X,Y), where
X and Y are constraint variables. Intuitively a drag point
Drag(X,Y) is simply a point that captures mouse events and
sets X and Y to the mouse’s position using edit constraints.

In prior work, when edit constraints were added to the system,
all existing stay constraints would remain in effect. Although
this might seem to lead to a system with no solution (since
some points will be constrained to stay and to move at the same
time), the edit constraints can be prioritized higher than the
stay constraints, with the intention of having edit constraints
over-ride stay constraints. However, to get this to work in

PX 7! 31 Drag(PX , PY)

Circ(CX , CY , CR)PY 7! 21

Initial Drag update Result

Layout PX = CX PX = CX PX = CX

PY = CY PY = CY PY = CY

Interactivity

Stay(PX) Stay(PX)
Stay(PY) Stay(PY)
Stay(CX) Stay(CX)
Stay(CY) Stay(CY)
Stay(CR) Stay(CR) Stay(CR)

Edit(PX = 31)
Edit(PY = 21)

Solver State

PX = 30 PX = 30 PX = 31
PY = 20 PY = 20 PY = 21
CX = 30 CX = 30 CX = 31
CY = 20 CY = 20 CY = 21
CR = 10 CR = 10 CR = 10

Figure 3: Solver state before, as a result of, and after a drag
update of (PX , PY) to (31, 21).

practice requires a very careful selection of weights to get the
right prioritization.

Instead, we take a different approach, in which we do not
depend on any prioritization. In particular, we explicitly tem-
porarily “unstay” the variables that we want to allow to move.
Every drag point has a free set, which is a set of variables
whose stay constraints will be temporarily removed when the
drag point is moved.

Figure 3 shows an example of how this works. This example
has a circle C and a drag point P at the middle of the circle.
The free set for the drag point is {PX , PY , CX , CY }. The
example shows what happens when the drag point is dragged
from (30,20) to (31,21). The table at the bottom of Figure 3
shows the solver state (layout constraints, interactivity con-
straints, and current values of all variables) at three different
points in time: (1) “Initial”: before the drag happens (2) “Drag
Update”: after the drag happens and after the constraints are
updated to reflect the drag, but before the solver has solved
the new constraints (3) “Result”: after the solver has solved
the constraints to reflect the drag. Note how the stay con-
straints for the free set of P , namely {PX , PY , CX , CY } are
temporarily removed, and then added back in.

Note that in this example if the drag point’s free set had in-
stead been {PX , CX}, then the stay constraints for PY and
CY would have remained in effect throughout. Since this ap-
proach prioritizes stay constraints over edit constraints, this
would make the Y-position of the circle remain the same, while
still allowing the X-position to change to 31. In essence, the
final result would be that the circle would only be allowed
to move in the X-direction, even if the edit constraint (i.e.,
the viewer moving the mouse) would try to move the circle
in the Y-direction. Note also that the prioritization of stay

Figure 4: Snap points for our shape primitives. Images and
Springs are analogous to Rectangles and Vectors.

constraints over edit constraints is precisely the opposite of
what prior work has done. This can be done without problems
because this approach explicitly removes stay constraints for
the variables that should be allowed to be free.

USER-GUIDED DIAGRAM SYNTHESIS
Now that we have described how to encode a single interactive
diagram using constraints, we can now present how interactiv-
ity synthesis works. The key insight in this synthesis approach
is that it is user-guided: during synthesis this approach will
ask the author for help with certain decisions that the author
is best equipped to do. This collaboration between human and
computer enables USER-GUIDED INTERACTION SYNTHE-
SIS to avoid expensive work and incorrect results, while also
reducing the work that the author needs to do.

Generating Layout Constraints
After the author draws the static diagram, USER-GUIDED
INTERACTION SYNTHESIS first generates layout constraints.
Layout constraints capture adjacency relationships, invariants
such as “a spring connects P and Q”, or “X lies right next to
Z”. To do so, we first define snap points for each of our shape
primitives and express the snap point coordinates in terms of
shape control variables. Recall that shape control variables
are the constraint variables passed as parameters to shape
primitives like Rect. Figure 4 shows the snap points for several
of our shape primitives. For example, given a vector rooted
at (X,Y) and with height H and width W , an expression for
the midpoint of the vector is (X + W/2, Y + H/2). This
expression calculates the midpoint regardless of updates to
any of the underlying variables. We call such expressions snap
point expressions.

Now that we have defined snap points, this approach starts
with the static diagram that is provided by the author. For
each snap point the algorithm now has two things: (1) as
mentioned above, it has a snap point expression stating the
snap point’s coordinates in terms of control variables, for
example (X +W/2, Y +H/2) for the mid-point of a vector;
(2) it also has the snap point’s concrete coordinates in the static
diagram, for example (10, 20).

This technique now searches the static diagram for contact
points, which are two snap points that have the same concrete
coordinates in the static diagram—in other words two snap
points that are located at the same exact position. This algo-
rithm assumes that a pair of overlapping snap points is not

DP3
X = BX

DP3
Y = BY

DP2
X = WX

DP2
Y = WY

DP1
X = WX + WW / 2

DP1
Y = WY + WH / 2

Figure 5: Drag points and their generated linear constraints.

accidental, but rather indicates that the two shapes should be
connected at that point. So, for each such pair of overlapping
snap points in the static diagram, the point is considered to be
a contact point, and this technique adds a constraint to keep
the two snap points co-located by equating their (X,Y) snap
point expressions.

Selecting Drag Points
After generating layout constraints, the next step is to select
drag points, which are the points that viewers can drag around
on the screen. A drag point is a snap point (as defined previ-
ously) which the author has decided to make interactive (recall
that each shape has many snap points, as shown for example
in Figure 4).

One approach for selecting drag points is to exhaustively
search through all subsets of snap points, make them inter-
active drag points, prune non-sensical results, and then have
the author go through these results. However, this approach is
both expensive and likely to generate an overwhelming num-
ber of options, when in fact the author in most cases already
knows precisely which points should be interactive.

Instead, we have decided to let the author make this decision
upfront by stating directly which snap points to turn into drag
points. The author can click on “Interactions”, which displays
all candidate points that can be made into drag points. The
author can then click on the points that should be interactive.
Figure 5 shows this interface after the author has selected
three drag points, which have become green to indicate they
are selected. At any point later in the editing, the author can go
back to this view and select additional drag points, or disable
previously selected drag points.

USER-GUIDED INTERACTION SYNTHESIS now needs to gen-
erate layout constraints for the newly created drag points. For
each snap point P that the author has selected to become a
drag point, the technique creates control variables for the drag
point’s X and Y coordinates, and creates constraints equating
those control variables to P ’s snap point expressions. These
constraints have two purposes. (1) When the underlying shape
moves/resizes because of other changes in the diagram, the
drag point also moves—consider for example a drag point in
the corner of a box for resizing, which should move with the
shape. (2) When the drag point is moved, it will have an effect
on the shape itself.

Generating Interactivity Constraints
Now that the author has chosen drag points, what remains
is to generate the constraints that govern the interactivity of
these drag points. Recall that interactivity of drag points
is governed by the free set of each drag point. This free
set captures those variables which will be allowed to change
when a given drag point is dragged. Thus, this algorithm
must generate a free-set map M from drag points to sets of
variables. Our general approach will again leverage human
interaction: the engine generates free-set maps and orders
them heuristically, and finally displays animated previews to
the author showing what interactions look like under these
different free-set maps. The author will then be able to quickly
find their desired interactivity.

Pruning by Validity. First, we show how to significantly
narrow down the search space of free-set maps before even
displaying them to the author. We define a notion of validity
for the free-set map, so that the search only needs to look
at valid maps, instead of all maps. To understand where this
notion of validity comes from, let’s return to constraint solvers.

There are two situations where constraint solvers give results
that are difficult to predict. The first is when the constraints
are underspecified, in which case there are many solutions,
and the constraint solver just picks one. The second is when
the constraints are overspecified, in which case the constraint
solver uses weights to figure out which constraints to violate.
In both of these situations the results are hard to predict and are
very sensitive to small changes in constraint weights. Instead,
the synthesis algorithm will keep constraints exactly specified,
where there is a single solution. The notion of validity for a
free-set map M will guarantee that the constraints are always
exactly specified, so that the solution depends only on the
constraints, and not on internal details of the solver or brittle
weights.

At first, one might think that there is a simple way to define
validity, which is to require that the number of variables is
equal to the number of constraints. Although in linear systems
this guarantees no more than one solution (i.e., it avoids being
underspecified), it doesn’t guarantee a solution (i.e., it does
not avoid being overspecified).

Instead, we define an algorithmic definition of validity. In
particular, for each drag point and the free set in M for the
drag point, the algorithm constructs the edit constraints that
would be built at runtime if the drag point were dragged, and
then uses a simple traversal through the constraints starting
at the edited variables to make sure that all variables can be
solved for exactly. To begin, the algorithm initially marks as
determined all the variables that have changed (i.e., mentioned
in edit constraints) and all other variables that are constrained
to stay unchanged (i.e., mentioned in a stay constraint). Next,
each time it sees a linear constraint where all but one of the
variables is determined, the last variable is marked as de-
termined (which works because linear constraints provide a
unique solution for the last undetermined variable in an equa-
tion). We repeat this process until no more variables can be
marked as determined. If during this process each variable is
marked as determined exactly once, this drag point and its as-

sociate free set leads to a single unique solution when dragged.
If this process succeeds for all drag points and their associated
free sets in M , we say that M is valid.

Narrowing down to only valid maps is really important: for a
drag point in our most complex benchmark, there are 28 shape
control variables for roughly 268 million possible free-set
maps but only 3 of these maps are valid. The above definition
of validity can be applied directly using a naı̈ve approach that
enumerates all possible free sets for each drag point, and then
applies the validity definition to only maintain valid maps.
While this approach works, it is also very expensive and in-
deed, intractible in practice. We have developed an optimized
dynamic-programming computation which builds the valid
free sets bottom-up efficiently.

Preview Ranking and Visualization. Empirically the num-
ber of valid maps for a given drag point is relatively small (on
average 14.5). As a result, for each drag point the algorithm
generates all valid free sets and ranks the results with several
heuristic aesthetics functions.

This ranking function encodes numerically the following four
aesthetic observations: (1) changes in response to viewer in-
teraction tend to involve only a handful of shapes, and so we
favor interactions with fewer number of shapes; (2) shapes
tend to respond to changes the same way in both dimensions,
e.g., resizing in one dimension but translating (not resizing)
in another is very unusual; (3) drag points on the corners of
shapes tend to control stretching, while drag points in the mid-
dle of shapes tend to control translation; (4) drag points that
move in one dimension are much less common than points
that move in multiple dimensions.

Once the free sets are ranked, the top-ranking free set for
each drag point becomes the default for that drag point. The
author can now interact with the diagram in the viewer pane.
If any drag point does not interact in the intended way, the
author can right-click on the drag point and see an ordered
list of all available interaction modalities. Each modality is
previewed automatically through a self-animating diagram,
showing the author what would happen if the drag point were
moved in a circular motion. The author can flip through the
different previews, and pick the one that captures the correct
interactivity. Figure 1c in the Overview section depicts an
automatically-animated preview. The preview adds an image
of a hand to indicate exactly which part of the diagram is being
dragged. There is also an “Accept” button (not shown) that
allows the author to accept the current preview, and selection
arrows (not shown) that allow the author to move between
different previews.

By ordering the interactivity modalities heuristically, using the
top-ranked modality as the default, and allowing the author to
change modalities through previews, this technique leverages
the computer’s ability to quickly narrow down millions of
modalities into a short ordered list, and also leverages the
human’s ability to quickly pick among a list of self-animating
previews.

PROTOTYPING AND EVALUATION
To evaluate USER-GUIDED INTERACTION SYNTHESIS, we
built a diagram editor named EDDIE that implements our
approach. We wanted EDDIE to be easily accessible and so
implemented EDDIE as a client-side HTML5/JavaScript web
application. For the static diagram editor, we slightly modified
the FabricJS [2] library.

To demonstrate feasibility on a real-world application of inter-
active diagrams, we picked the domain of physics education.
We evaluate EDDIE on diagrams in the Physics Education
Technology (PhET) project, a library of interactive educational
technical diagrams [42]. PhET has received many awards and
accolades and has provided empirical evidence for its edu-
cational effectiveness [6, 36, 13, 9]. In addition to being
interactive, PhET’s diagrams include a simulation modelling
the technical topic. As a proof of concept we extended ED-
DIE with a naı̈ve physics engine to model a subset of PhET’s
physical diagrams.

We evaluate EDDIE along three dimensions: (1) Expressive-
ness, which looks at what kinds of interactive diagrams ED-
DIE can build (2) Cost Savings, which looks at how good
EDDIE is at reducing a user’s effort of authoring interactive
diagrams and (3) Usability, which looks at how usable the tool
is in practice. The first two dimensions (expressiveness and
costs savings) are evaluated through a case study in which we
ourselves implement several real-world diagrams. The third
dimension (usability) is evaluated by asking thirteen educators
to use EDDIE to build two PhET diagrams.

Case Study. In our case study, we looked at all interactive
PhET physics diagrams for the following three topics: (1)
simple spring mechanics, (2) gravity and planetary motion, and
(3) pendulum motion. We discuss the physical and interactive
properties of diagrams within each of these topics in turn.

• Simple Spring Mechanics: these diagrams study the dy-
namics of idealized, massless springs with one end fixed and
the other subject to an applied force, for example a weight
or another spring. The drag point is connected to the free
end and controls the displacement of the spring. Springs
can be connected end-to-end, in series, or side-by-side, in
parallel. This category contains five diagrams: 1 spring, 2
springs, 2 series springs, 2 parallel springs, and a weight on
a spring.

• Gravity and Planetary Motion: these diagrams study the
force of gravity and its application to planetary motion.
These diagrams have a number of spheres representing plan-
ets, as well as overlaid vectors representing velocity. PhET
uses drag points in two ways: to determine the placement
of a planet, and to determine the value of a velocity vec-
tor. This category contains four diagrams: a gravity lab, 2
planets, 3 planets, and 4 planets.

• Pendulum Motion: this diagram studies the motion of a
simple pendulum subject to gravity and air resistence. The
shapes consist of spheres representing the pendulum base
and weight and a line between the spheres. A drag point
controls the position (and by extension, angular displace-
ment) of the pendulum weight. This category contains two

diagrams, one with two pendulums and one with a single
pendulum.

Across the three categories above, there are a total of 11 in-
teractive diagrams. EDDIE is able to generate nine of these
diagrams with very little human interaction, requiring at most
five minutes of effort by the authors. Before we show the ben-
efits that EDDIE provides in these nine diagrams compared to
the traditional way of building these diagrams, we first explain
the two diagrams that EDDIE cannot generate.

The first unsupported diagram is a series spring simulation in
which the drag point simultaneously translates and compresses
one of the springs. Our system limits updates to a single vari-
able and so does not support this interaction. To support such
interactions, we could extend EDDIE to use ranking functions
on stay-constraints.

The second unsupported diagram is a spring simulation in
which the viewer can drag-and-drop weights onto a platform
attached to a spring. This action consists of two different
layout configurations, one in which the weight is free-floating
and one in which the weight is attached to the spring. Our
framework currently assumes the layout constraints always
hold for a given diagram and so can’t support this functionality.
To support such interactions, EDDIE would need to add support
for conditional layout constraints and drag-and-drop features.

Cost Savings. We now evaluate the manual effort required by
the author to make diagrams in EDDIE compared to the tradi-
tional approach. The baseline we use is the PhET implementa-
tion of the nine benchmarks we also implemented in EDDIE.
In general, PhET benchmarks require a large amount of effort
to build, and the builder needs to have a lot of programming
experience. At the time of this writing, the project employs
four full-time software developers [6]. Each diagram requires
between 3800 and 5700 lines of handwritten JavaScript and
Flash. Figure 6 shows the different benchmarks, along with
the lines of codes required to implement each benchmark in
PhET (column “PhET LoC”).

In EDDIE, authoring a diagram requires two efforts. First,
the author generates a static representation of the diagram.
We have not formally quantified this effort, but most static
diagrams have only a handful of shapes, and creating and
aligning those shapes takes on the order of minutes.

Second, the author specifies drag points and drag point inter-
actions in the diagram. Figure 6 shows the effort required for
this in three columns: “P” shows the number of drag points
that the author must select; “V” shows the total number of
previews (that the author must view across all drag points for
that benchmark (note that the V count includes the view that
the author accepts for each drag point, meaning that V cannot
be smaller than P); “VPP” (which stands for views per point)
shows the total number of previews that the author must view
per drag point, in other words VPP = V/P (VPP cannot be
smaller than 1).

The VPP metric captures the effectiveness of this technique’s
heuristic for ordering interactivity models (through ranking
of free-set maps). A VPP of 1 corresponds to EDDIE always

Category Phet Name P V VPPLoC

Springs 5278
1 spring 1 3 3

2 springs 2 6 3

parallel 1 8 8

Orbits/Gravity 5628

lab 2 4 2

2 body 4 4 1

3 body 6 6 1

4 body 8 8 1

Pendulum 3821 1 mass 1 1 1

2 masses 2 2 1

Figure 6: Comparison of programming effort between PhET
and EDDIE for a variety of PhET physics diagrams. “P” is the
number of points present in the diagram, “V” is the number of
candidate interactions viewed by the user, and “VPP” is our
metric of “Views-Per-Point”, “V”/“P”. EDDIE significantly
reduces the effort of authoring diagrams, requiring one or two
views per point for most diagrams.

choosing the right interactivity model first, while a high VPP
corresponds to showing many undesired interactivity models
before the author finds the right one.

The VPP results demonstrate that EDDIE ranks interaction
modalities well: in most cases, the correct interaction modal-
ity is in the top 3. Only one benchmark required 8 views
per point, but even in this case, because the previews are
self-animating, the viewer can very quickly browse through
8 previews, usually in less than one minute. As a whole, this
case study demonstrates that EDDIE can express a variety
of real-world diagrams and further, requires little effort by a
power user (i.e., one of the authors of this paper).

Usability: Teacher Usage and Insights. To collect feedback
and evaluate usability on the target audience of nonprogram-
mers, we introduced EDDIE during a higher-education com-
puter science pedagogy class for K-12 teachers. We recruited
eleven science teachers (three female) aged 25-55 and two
male science professors aged 45-60. Participants were first
given a brief 15-20 minute presentation on interactive dia-
grams and the features of EDDIE.

Next, the participants were given an instructional page about
EDDIE and two interactive PhET diagrams to replicate within
EDDIE. For each diagram, the organizer demonstrated the
desired functionality of the specific diagram. The organizer
did not directly aid the participants after participants started
using EDDIE.

All participants replicated the two diagrams within an hour.
The first diagram, consisting of a weight on the end of a
spring [7], took the participants roughly 35-45 minutes to
replicate. The second diagram was simpler, consisting of two
pendulums hanging from a common pivot [5] and took roughly
5-20 minutes to replicate.

After completing both diagrams, the participants answered
some qualitative questions about their experience using EDDIE.
We asked participants for both positive and negative feedback
about the tool, in a free form manner. We did not prompt the
participants to discuss any particular feature of EDDIE, and
we did not tell them what part of EDDIE was novel.

On the positive side, 8 out of 13 participants mentioned that
EDDIE was easy to use and one explicitly mentioned that the
side-by-side panes were useful for simultaneously display-
ing the author’s and viewer’s perspectives. Finally, 5 out of
13 participants mentioned that they liked EDDIE’s static edit-
ing capabilities, which are mostly inherited from the existing
FabricJS framework.

On the negative side, EDDIE performs a lot of work for the
user and as a consequence several participants experienced a
steep learning curve—3 out of 13 participants were at times
surprised by the output of their actions. However, all three par-
ticipants overcame the learning curve by referring to the help
pages and all three completed both exercises. Furthermore, 3
out of 13 participants were at first confused by the functional-
ity of the left/right buttons in the interface that enables users to
select interaction modality. This confusion was resolved after
viewing the help page and all three participants completed the
diagrams. EDDIE’s visualization and presentation of the list is
tangential to our research contribution and was picked for ease
of implementation. There are other mechanisms to make this
interface clearer, for example displaying a swiping animation
when previews are switched, replacing the left/right buttons
with a single “next” button, or replacing the left/right buttons
with a touch/swipe interface.

Finally, the participants used their own machines, which re-
sulted in a wide variety of platforms (e.g., tablets, netbooks,
and laptops) and web browsers (e.g., Firefox, Chrome, Sa-
fari, Internet Explorer, Edge). A significant number of these
environments experienced some performance problems, for
example lagging and jittery animated previews. Unfortunately,
we did not discover these problems before the study because
we had developed and tested EDDIE on a higher-end laptop,
on which performance was not an issue. Still, despite these
performance problems, EDDIE was ultimately usable and all
participants finished their tasks quickly. Furthermore, we have
not yet done any significant performance optimizations or ex-
tensive cross-browser testing. With further tuning and testing,
we believe we can bring good performance to EDDIE across a
wide variety of environments.

Insights and Lessons Learned. Through our usage and eval-
uation of EDDIE, we found that EDDIE’s design works well
for a variety of reasons.

First, the side-by-side view is useful because it gives immedi-
ate feedback on how generated diagrams work. Task-switching
is well-known to require measurable cognitive effort [44]. ED-
DIE’s side-by-side panes likely incur less cognitive load than
alternating between two different views, because the panes in
EDDIE are always visible at the same position.

Second, the self-animated previews are effective at quickly
allowing authors to see different interaction modalities, but

without having to do any actual manual interaction. This
makes the selection process for interaction modalities very
quick and easy to use.

Third, the approach of reducing the search space (by prun-
ing underconstrained modalities) and then ordering the top
candidates is effective because it narrows the author’s atten-
tion to only the most promising interaction modalities. While
developing EDDIE, prior to adding the ordering heuristics,
we experienced frustration at having to navigate many incor-
rect interactions. After adding the aesthetic heuristics, the
experience was much improved.

Limitations and Future Work. There are clear opportunities
for future work on expanding our expressiveness and automa-
tion to get closer to the expressiveness of more manual tools
like Kitty [30] or Apparatus [1], including: continuous lo-
cations for drag points, user-defined adjacency relationships,
conditional relationships, and nonlinear relationships. Still,
despite these limitations on expressiveness, our formalism of
shapes and drag points connected by linear adjacency rela-
tionships can capture about 67% of the interactivity present in
PhET diagrams, a real-world set of interactive diagrams that
domain experts actually wanted to build.

In addition, our physics engine is relatively simplistic and as
a consequence, there are many diagrams in PhET for which
EDDIE can support the interactive portion but not the domain-
specific chemical, mathematical, or physical components. To
fully support these diagrams, an expert programmer would
have to extend EDDIE’s implementation by adding domain-
specific primitives for these uncovered topics. Once this is
done, diagram authors could then use the newly added prim-
itives to reproduce these (currently unsupported) diagrams,
without writing any additional code.

Summary. Our case study demonstrates that EDDIE can ex-
press and implement a broad variety of real-world diagrams.
EDDIE only requires a handful of clicks to generate a complete
interactive diagram and does not require any coding experi-
ence. In contrast, the original benchmarks require a large
amount of programming expertise, which prevents many con-
tent experts from directly authoring diagrams. In addition, we
demonstrated that EDDIE is usable by non-programming users
and gathered some valuable target audience feedback about
diagram construction using EDDIE.

CONCLUSION
We presented USER-GUIDED INTERACTION SYNTHESIS, a
technique that transforms a static diagram into an interactive
one without requiring any code to be written. We also pre-
sented an implementation in a tool called EDDIE, which we
show is expressive and usable. By drastically reducing the cost
of making interactive diagrams, this line of research opens up
the possibility for experts who have domain knowledge (e.g.,
teachers who know about STEM) to build animated diagrams
that they would otherwise not be able to build. This provides
an exciting avenue not only for future research, but also for
eventual impact on the adoption of interactive diagrams.

Funding: This work was funded by NSF grant 1423517.

REFERENCES
1. 2016. Apparatus: a hybrid graphics editor and

programming environment for creating interactive
diagrams. Website. (2016). Accessed on 2016-04-12 from
http://aprt.us.

2. 2016. FabricJS JavaScript Canvas Library. Website.
(2016). Accessed on 2016-09-19 from
http://fabricjs.com/.

3. 2016. Interactive Mathematics: Learn math while you
play with it. Website. (2016). Accessed on 2016-04-08
from http://www.intmath.com.

4. 2016. Overconstrained: Cassowary projects and its
community. Website. (2016). Accessed on 2016-04-11
from http://overconstrained.io.

5. 2016. Pendulum Lab – Motion, Pendulum, Simple
Harmonic Motion – PhET. Website. (2016). Accessed on
2016-09-19 from https://phet.colorado.edu/en/
simulation/legacy/pendulum-lab.

6. 2016. PhET: Interactive Simulations for Science and
Math. Website. (2016). Accessed on 2016-04-11 from
https://PhET.colorado.edu.

7. 2016. Resonance – Resonance, Harmonic Motion,
Oscillator – PhET. Website. (2016). Accessed on
2016-09-19 from https://phet.colorado.edu/en/
simulation/legacy/resonance.

8. Wendy K. Adams, Sam Reid, Ron LeMaster, Sarah
McKagan, Katherine Perkins, Michael Dubson, and
Carl E. Wieman. 2008a. A Study of Educational
Simulations Part II Interface Design. Journal of
Interactive Learning Research 19, 4 (October 2008),
551–577. https://www.learntechlib.org/p/24364

9. Wendy K. Adams, Sam Reid, Ron LeMaster, Sarah B.
McKagan, Katherine K. Perkins, Michael Dubson, and
Carl E. Wieman. 2008b. A Study of Educational
Simulations Part I - Engagement and Learning. Journal of
Interactive Learning Research 19, 3 (July 2008),
397–419. https://www.learntechlib.org/p/24230

10. Christine Alvarado and Randall Davis. 2004.
SketchREAD: A Multi-domain Sketch Recognition
Engine. In Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’04). ACM, New York, NY, USA, 23–32. DOI:
http://dx.doi.org/10.1145/1029632.1029637

11. Christine Alvarado and Randall Davis. 2006. Resolving
ambiguities to create a natural computer-based sketching
environment. In ACM SIGGRAPH 2006 Courses. ACM,
24.

12. Greg J. Badros, Alan Borning, and Peter J. Stuckey. 2001.
The Cassowary linear arithmetic constraint solving
algorithm. ACM Transactions on Computer-Human
Interaction 8, 4 (dec 2001), 267–306. DOI:
http://dx.doi.org/10.1145/504704.504705

13. Julia M. Chamberlain, Kelly Lancaster, Robert Parson,
and Katherine K. Perkins. 2014. How guidance affects
student engagement with an interactive simulation. Chem.
Educ. Res. Pract. 15 (2014), 628–638. Issue 4. DOI:
http://dx.doi.org/10.1039/C4RP00009A

14. Salman Cheema and Joseph J LaViola Jr. 2010. Applying
mathematical sketching to sketch-based physics tutoring
software. In International Symposium on Smart Graphics.
Springer, 13–24.

15. Allen Cypher and Daniel Conrad Halbert. 1993. Watch
what I do: programming by demonstration. MIT press.

16. George B Dantzig, Alex Orden, Philip Wolfe, and others.
1955. The generalized simplex method for minimizing a
linear form under linear inequality restraints. Pacific J.
Math. 5, 2 (1955), 183–195.

17. Richard C. Davis, Brien Colwell, and James A. Landay.
2008. K-sketch. In Proceeding of the twenty-sixth annual
CHI conference on Human factors in computing systems -
CHI ’08. ACM Press, New York, New York, USA, 413.
DOI:http://dx.doi.org/10.1145/1357054.1357122

18. Tim Felgentreff, Alan Borning, Robert Hirschfeld, Jens
Lincke, Yoshiki Ohshima, Bert Freudenberg, and Robert
Krahn. 2014. ECOOP 2014 – Object-Oriented
Programming: 28th European Conference, Uppsala,
Sweden, July 28 – August 1, 2014. Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter
Babelsberg/JS, 411–436. DOI:
http://dx.doi.org/10.1007/978-3-662-44202-9_17

19. Bjorn N Freeman-Benson, John Maloney, and Alan
Borning. 1990. An incremental constraint solver.
Commun. ACM 33, 1 (1990), 54–63.

20. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. 2009. Generating Photo
Manipulation Tutorials by Demonstration. In ACM
SIGGRAPH 2009 Papers (SIGGRAPH ’09). ACM, New
York, NY, USA, Article 66, 9 pages. DOI:
http://dx.doi.org/10.1145/1576246.1531372

21. Sumit Gulwani. 2010. Dimensions in program synthesis.
In Proceedings of the 12th international ACM SIGPLAN
symposium on Principles and practice of declarative
programming. ACM, 13–24.

22. Sumit Gulwani, Susmit Jha, Ashish Tiwari, and
Ramarathnam Venkatesan. 2011a. Synthesis of loop-free
programs. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and
implementation - PLDI ’11. ACM Press, New York, New
York, USA, 62. DOI:
http://dx.doi.org/10.1145/1993498.1993506

23. Sumit Gulwani, Vijay Anand Korthikanti, and Ashish
Tiwari. 2011b. Synthesizing geometry constructions.
ACM SIGPLAN Notices 46, 6 (jun 2011), 50. DOI:
http://dx.doi.org/10.1145/1993316.1993505

24. Markus Hohenwarter and Karl Fuchs. 2005. Combination
of dynamic geometry , algebra and calculus in the

http://aprt.us
http://fabricjs.com/
http://www.intmath.com
http://overconstrained.io
https://phet.colorado.edu/en/simulation/legacy/pendulum-lab
https://phet.colorado.edu/en/simulation/legacy/pendulum-lab
https://PhET.colorado.edu
https://phet.colorado.edu/en/simulation/legacy/resonance
https://phet.colorado.edu/en/simulation/legacy/resonance
https://www.learntechlib.org/p/24364
https://www.learntechlib.org/p/24230
http://dx.doi.org/10.1145/1029632.1029637
http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1039/C4RP00009A
http://dx.doi.org/10.1145/1357054.1357122
http://dx.doi.org/10.1007/978-3-662-44202-9_17
http://dx.doi.org/10.1145/1576246.1531372
http://dx.doi.org/10.1145/1993498.1993506
http://dx.doi.org/10.1145/1993316.1993505

software system GeoGebra. Computer algebra systems
and dynamic geometry systems in mathematics teaching
conference 2004 2002, July (2005), 1–6. http:
//www.geogebratube.org/material/show/id/747

25. Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014.
Programming by manipulation for layout. In Proceedings
of the 27th annual ACM symposium on User interface
software and technology - UIST ’14. ACM Press, New
York, New York, USA, 231–241. DOI:
http://dx.doi.org/10.1145/2642918.2647378

26. Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
2007. Teddy: a sketching interface for 3D freeform
design. In Acm siggraph 2007 courses. ACM, 21.

27. Joaquim Jorge and Faramarz Samavati. 2010.
Sketch-based interfaces and modeling. Springer Science
& Business Media.

28. Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive Visual
Specification of Data Transformation Scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 3363–3372. DOI:
http://dx.doi.org/10.1145/1978942.1979444

29. Alan Kay and Adele Goldberg. 1977. Personal dynamic
media. Computer 10, 3 (1977), 31–41.

30. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014a. Kitty: sketching
dynamic and interactive illustrations. Proceedings of the
27th annual ACM symposium on User interface software
and technology - UIST ’14 (2014), 395–405. DOI:
http://dx.doi.org/10.1145/2642918.2647375

31. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
Shengdong Zhao, and George Fitzmaurice. 2014b. Draco:
Bringing Life to Illustrations with Kinetic Textures.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2014), 351–360. DOI:
http://dx.doi.org/10.1145/2556288.2556987

32. Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani,
and George Fitzmaurice. 2016. Skuid: Sketching
Dynamic Illustrations Using the Principles of 2D
Animation. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM,
4599–4609.

33. Vu Le, Sumit Gulwani, and Zhendong Su. 2013.
SmartSynth. In Proceeding of the 11th annual
international conference on Mobile systems, applications,
and services - MobiSys ’13. ACM Press, New York, New
York, USA, 193. DOI:
http://dx.doi.org/10.1145/2462456.2464443

34. Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: automating & sharing how-to
knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1719–1728.

35. Hao Lü and Yang Li. 2012. Gesture Coder: A Tool for
Programming Multi-touch Gestures by Demonstration. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 2875–2884. DOI:
http://dx.doi.org/10.1145/2207676.2208693

36. Emily B. Moore, Timothy A. Herzog, and Katherine K.
Perkins. 2013. Interactive simulations as implicit support
for guided-inquiry. Chem. Educ. Res. Pract. 14 (2013),
257–268. Issue 3. DOI:
http://dx.doi.org/10.1039/C3RP20157K

37. B. A. Myers. 1986. Visual Programming, Programming
by Example, and Program Visualization: A Taxonomy. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’86). ACM, New
York, NY, USA, 59–66. DOI:
http://dx.doi.org/10.1145/22627.22349

38. Brad A. Myers. 1990. Creating User Interfaces Using
Programming by Example, Visual Programming, and
Constraints. ACM Trans. Program. Lang. Syst. 12, 2
(April 1990), 143–177. DOI:
http://dx.doi.org/10.1145/78942.78943

39. Dan R. Olsen, Jr. and Kirk Allan. 1990. Creating
Interactive Techniques by Symbolically Solving
Geometric Constraints. In Proceedings of the 3rd Annual
ACM SIGGRAPH Symposium on User Interface Software
and Technology (UIST ’90). ACM, New York, NY, USA,
102–107. DOI:
http://dx.doi.org/10.1145/97924.97936

40. Stephen Oney, Brad Myers, and Joel Brandt. 2012.
ConstraintJS: programming interactive behaviors for the
web by integrating constraints and states. In Proceedings
of the 25th annual ACM symposium on User interface
software and technology. ACM, 229–238.

41. Eleanor O’Rourke, Erik Andersen, Sumit Gulwani, and
Zoran Popović. 2015. A Framework for Automatically
Generating Interactive Instructional Scaffolding. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 1545–1554. DOI:
http://dx.doi.org/10.1145/2702123.2702580

42. Katherine Perkins, Wendy Adams, Michael Dubson,
Noah Finkelstein, Sam Reid, Carl Wieman, and Ron
LeMaster. 2006. PhET: Interactive Simulations for
Teaching and Learning Physics. The Physics Teacher 44,
1 (dec 2006), 18. DOI:
http://dx.doi.org/10.1119/1.2150754

43. Noah S. Podolefsky, Katherine K. Perkins, and Wendy K.
Adams. 2009. Computer simulations to classrooms: tools
for change. AIP Conference Proceedings 1179, 1 (2009),
233–236. DOI:
http://dx.doi.org/10.1063/1.3266723

44. Robert D Rogers and Stephen Monsell. 1995. Costs of a
predictible switch between simple cognitive tasks.
Journal of experimental psychology: General 124, 2
(1995), 207.

http://www.geogebratube.org/material/show/id/747
http://www.geogebratube.org/material/show/id/747
http://dx.doi.org/10.1145/2642918.2647378
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1145/2642918.2647375
http://dx.doi.org/10.1145/2556288.2556987
http://dx.doi.org/10.1145/2462456.2464443
http://dx.doi.org/10.1145/2207676.2208693
http://dx.doi.org/10.1039/C3RP20157K
http://dx.doi.org/10.1145/22627.22349
http://dx.doi.org/10.1145/78942.78943
http://dx.doi.org/10.1145/97924.97936
http://dx.doi.org/10.1145/2702123.2702580
http://dx.doi.org/10.1119/1.2150754
http://dx.doi.org/10.1063/1.3266723

45. Leonid Ryzhyk, Adam Walker, John Keys, Alexander
Legg, Arun Raghunath, Michael Stumm, and Mona Vij.
2014. User-guided device driver synthesis. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). 661–676.

46. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial
Sketching for Finite Programs. SIGOPS Oper. Syst. Rev.
40, 5 (Oct. 2006), 404–415. DOI:
http://dx.doi.org/10.1145/1168917.1168907

47. Ivan E Sutherland. 1964. Sketch pad a man-machine
graphical communication system. In Proceedings of the
SHARE design automation workshop. ACM, 6–329.

48. Brad Vander Zanden. 1992. Languages for Developing
User Interfaces. A. K. Peters, Ltd., Natick, MA, USA,
Chapter An Active-value&Mdash;Spreadsheet Model for
Interactive Languages, 183–209.
http://dl.acm.org/citation.cfm?id=131302.131313

49. Bradley T. Vander Zanden, Richard Halterman, Brad A.
Myers, Rob Miller, Pedro Szekely, Dario A. Giuse,
David Kosbie, and Rich McDaniel. 2005. Lessons
Learned from Programmers’ Experiences with One-way
Constraints: Research Articles. Softw. Pract. Exper. 35,
13 (Nov. 2005), 1275–1298. DOI:
http://dx.doi.org/10.1002/spe.v35:13

50. Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel
Wigdor. 2016. Object-Oriented Drawing. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems. ACM, 4610–4621.

51. Jun Xing, Rubaiat Habib Kazi, Tovi Grossman, Li-Yi
Wei, Jos Stam, and George Fitzmaurice. 2016.
Energy-Brushes: Interactive Tools for Illustrating
Stylized Elemental Dynamics. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology. ACM, 755–766.

52. Jun Xing, Li-Yi Wei, Takaaki Shiratori, and Koji Yatani.
2015. Autocomplete hand-drawn animations. ACM
Transactions on Graphics (TOG) 34, 6 (2015), 169.

53. Kuat Yessenov, Shubham Tulsiani, Aditya Menon,
Robert C. Miller, Sumit Gulwani, Butler Lampson, and
Adam Kalai. 2013. A Colorful Approach to Text
Processing by Example. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’13). ACM, New York, NY, USA,
495–504. DOI:
http://dx.doi.org/10.1145/2501988.2502040

54. Clemens Zeidler, Christof Lutteroth, Wolfgang
Sturzlinger, and Gerald Weber. 2013. The Auckland
Layout Editor: An Improved GUI Layout Specification
Process. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). ACM, New York, NY, USA, 343–352. DOI:
http://dx.doi.org/10.1145/2501988.2502007

55. Bo Zhu, Michiaki Iwata, Ryo Haraguchi, Takashi
Ashihara, Nobuyuki Umetani, Takeo Igarashi, and Kazuo
Nakazawa. 2011. Sketch-based Dynamic Illustration of
Fluid Systems. ACM Transactions on Graphics 30, 6 (dec
2011), 1. DOI:
http://dx.doi.org/10.1145/2070781.2024168

http://dx.doi.org/10.1145/1168917.1168907
http://dl.acm.org/citation.cfm?id=131302.131313
http://dx.doi.org/10.1002/spe.v35:13
http://dx.doi.org/10.1145/2501988.2502040
http://dx.doi.org/10.1145/2501988.2502007
http://dx.doi.org/10.1145/2070781.2024168

	Introduction
	Related Work
	Overview
	Interactive Diagrams using Constraints
	Background on Linear Constraint Systems
	Interactive Diagrams using Constraints

	User-Guided Diagram Synthesis
	Generating Layout Constraints
	Selecting Drag Points
	Generating Interactivity Constraints

	Prototyping and Evaluation
	Conclusion
	References

