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We combine analytical understanding of resonant dynamics in
two-planet systems with machine-learning techniques to train a
model capable of robustly classifying stability in compact multi-
planet systems over long timescales of 109 orbits. Our Stability of
Planetary Orbital Configurations Klassifier (SPOCK) predicts sta-
bility using physically motivated summary statistics measured in
integrations of the first 104 orbits, thus achieving speed-ups of
up to 105 over full simulations. This computationally opens up
the stability-constrained characterization of multiplanet systems.
Our model, trained on ∼100,000 three-planet systems sampled
at discrete resonances, generalizes both to a sample spanning a
continuous period-ratio range, as well as to a large five-planet
sample with qualitatively different configurations to our train-
ing dataset. Our approach significantly outperforms previous
methods based on systems’ angular momentum deficit, chaos
indicators, and parametrized fits to numerical integrations. We
use SPOCK to constrain the free eccentricities between the inner
and outer pairs of planets in the Kepler-431 system of three
approximately Earth-sized planets to both be below 0.05. Our
stability analysis provides significantly stronger eccentricity con-
straints than currently achievable through either radial velocity
or transit-duration measurements for small planets and within
a factor of a few of systems that exhibit transit-timing varia-
tions (TTVs). Given that current exoplanet-detection strategies
now rarely allow for strong TTV constraints [S. Hadden, T. Barclay,
M. J. Payne, M. J. Holman, Astrophys. J. 158, 146 (2019)], SPOCK
enables a powerful complementary method for precisely charac-
terizing compact multiplanet systems. We publicly release SPOCK
for community use.

exoplanets | chaos | machine learning | orbital dynamics |
dynamical systems

Isaac Newton, having formulated his law of gravitation, recog-
nized that it left the long-term stability of the Solar System in

doubt. Would the small near-periodic perturbations the planets
exert on one another average out over long timescales, or would
they accumulate until orbits cross, rendering the system unstable
to planetary collisions or ejections?

The central difficulty arises from the existence of resonances,
where there is an integer ratio commensurability between dif-
ferent frequencies in the system. These resonances complicate
efforts to average the dynamics over long timescales. Work
on this problem culminated in the celebrated Komolgorov–
Arnold–Moser (KAM) theorem (1–3), which guarantees the
existence of stable, quasiperiodic trajectories below a speci-
fied perturbation strength. Unfortunately, the KAM theorem
is generally not informative in this context, since it typically
can only guarantee stability for masses far below the planetary
regime (4, 5).

Without a clear path to a full solution, we focus on the
limit of closely separated planets. This regime has impor-
tant applications for understanding the orbital architectures of
planetary systems beyond our own (exoplanets), since strong
observational biases toward detecting planets close to their
host star result in compact populations of observed multi-
planet systems.∗ In these dynamically delicate configurations, it
is possible for most of the orbital solutions inferred from noisy
data to undergo violent dynamical instabilities when numeri-
cally integrated forward in time for even 0.1% of the system’s
age (6, 7). Since one does not expect to discover most sys-
tems just prior to such a cataclysm, this offers an opportunity
to constrain the masses and orbital parameters of such plan-
ets by rejecting configurations that lead to rapid instability.
In this way, previous authors have performed direct numerical
(N-body) integrations to narrow down physical orbital architec-
tures and formation histories for important exoplanet discoveries
(e.g., refs. 8–12).

Significance

Observations of planets beyond our solar system (exoplan-
ets) yield uncertain orbital parameters. Particularly in com-
pact multiplanet systems, a significant fraction of observa-
tionally inferred orbital configurations can lead to planetary
collisions on timescales that are short compared with the age
of the system. Rejection of these unphysical solutions can thus
sharpen our view of exoplanetary orbital architectures. Long-
term stability determination is currently performed through
direct orbital integrations. However, this approach is computa-
tionally prohibitive for application to the full exoplanet sample.
By speeding up this process by up to five orders of magni-
tude, we enable precise exoplanet characterization of compact
multiplanet systems and our ability to examine the stability
properties of the multiplanet exoplanet sample as a whole.
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However, given the high dimensionality of parameters, the
computational expense of such long-term integrations typically
results in only a small fraction of candidate orbital configurations
being explored and integration timespans being many orders of
magnitude shorter than the typical Gyr ages of such systems (e.g.,
refs. 6 and 11–17). This renders the widespread application of
such constraints to the ever-growing exoplanet sample orders of
magnitude beyond computational reach.

Extensive previous work has narrowed down the particular
resonances responsible for dynamical instabilities in compact sys-
tems. In particular, analytical studies of tightly spaced two-planet
systems (18–20) have shown that the chaos is driven specifically
by the interactions between mean motion resonances (MMRs),
i.e., integer commensurabilities between planets’ orbital periods.
The limited number of available MMRs in two-planet systems
implies that for initially circular orbits, there exists a critical,
mass-dependent separation between the two bodies. For plane-
tary separations below this limit, MMRs are close enough to one
another in phase space to overlap and drive rapid instabilities
(18, 19), and there is a sharp transition to long-lived configu-
rations beyond it. This result has recently been generalized for
eccentric orbits (20).

By contrast in 3+ planet systems, instabilities can occur for
separations between adjacent planet pairs significantly beyond
the above two-planet limit, and instability times exhibit a con-
tinuous and much larger dynamic range (21). Previous work
has argued that this cannot be solely explained by the larger
number of available MMRs between all possible pairs of plan-
ets (22, 23). These authors argue that three-body resonances,
i.e., integer combinations between the periods of three bod-
ies are responsible for “filling in the space” between two-body
MMRs and driving instabilities over a continuous range of
separations.

However, while a clearer physical picture is emerging, theo-
retical estimates cannot yet quantitatively match the results from
numerical integrations (22). Many previous numerical studies
have instead presented empirical fits to the overall steep rise in
instability times with interplanetary separation, recorded from
large suites of numerical integrations (21, 24–30). This is a useful
approach for elucidating the underlying dynamics and scalings
with dominant parameters but typically involves simplifications
such as equal-mass, or equal-separation planets. This limita-
tion, together with modulations near MMRs on overall trends
in instability times of up to five orders of magnitude (31), leads
to quantitative disagreements between such studies and renders
them inadequate for accurately characterizing real multiplanet
systems (Results).

Here, we present a machine-learning model that can reliably
classify the stability of compact 3+ planet configurations over
109 orbits. Our model, the Stability of Planetary Orbital Config-
urations Klassifier (SPOCK), is up to 105 times faster than direct
integration, computationally opening up the stability constrained
characterization of compact multiplanet systems.

Previous Models
Previous numerical efforts to predict the instability times of vari-
ous orbital configurations can roughly be broken down into four
groups.

N-Body. The most straightforward (and computationally costly)
method is to run a direct numerical integration. A 109 orbit
integration with a timestep of 3.5% of the innermost planet’s
orbital period takes ∼7 central processing unit (CPU) hours
on a 2.1-GHz Intel Xeon Silver 4116 using the WHFast
integrator (32).

Interestingly, even this answer will not be perfect. The fact that
planetary systems are chaotic means that a given initial condi-
tion should not be considered to have a single instability time.

Rather, an N-body integration can be interpreted as sampling a
single instability time from a broader distribution of values. If
one numerically characterizes the distribution of these instabil-
ity times, one finds that, for compact systems destabilizing within
109 orbits, they are approximately log-normally distributed, with
a uniform SD of ∼0.4 decades (33, 34). To empirically quantify
this fundamental limit to predictability, for each of the integra-
tions in our training dataset, we have run a second “shadow
integration” of the same initial conditions offset by one part
in 1011. This represents an independent draw from that initial
condition’s instability time distribution. There will thus be cases
where one integration says the configuration is stable, while the
other one does not. The existence of these uncertain outcomes
sets the fundamental limit any stability classifier can hope to
reach.

Hill. Several previous studies have fit functional forms to insta-
bility times recorded in large suites of N-body integrations (e.g.,
refs. 21, 25, 27, 28, and 31). They found that instability times
rise steeply with increasing interplanetary separation measured
in mutual Hill radii, i.e., the characteristic radius around the
planets in which their gravity dominates that of the star (see also
refs. 22 and 35),

RH = ai

(
mi +mi+1

M?

)1/3,
[1]

where ai is the semimajor axis of the inner planet in the pair,
mi and mi+1 are the respective planet masses, and M? is the
stellar mass.† While this provides insight into the underlying
dynamics (22, 35), other orbital parameters also strongly influ-
ence stability. Follow-up studies have considered the effects of
finite eccentricities and inclinations (e.g., refs. 24, 26, 36, and 37)
but make various simplifying assumptions (e.g., equal interplan-
etary separations and eccentricities). Different assumptions lead
to quantitative disagreements between different studies, and the
reliability of their predictions to real systems, where all planets
have independent orbital parameters, is unclear.

Angular Momentum Deficit. A classical result in orbital dynam-
ics is that if the effects of MMRs are removed, then planets
will exchange angular momenta at fixed semimajor axes (38).
Instabilities can still arise under these so-called secular dynamics,
through chaos introduced by the overlap of resonances between
the slower set of frequencies at which the orbits and their
corresponding orbital planes precess (39, 40). In this approxima-
tion, there is a conserved quantity (41, 42), termed the Angular
Momentum Deficit (AMD). The AMD acts as a constant reser-
voir of eccentricity and inclination that the planets can exchange
among one another. If the AMD is too small to allow for orbit
crossing and collisions even in the worst case where all of the
eccentricity is given to one adjacent pair of planets, the system
is AMD stable (43, 44). This is a powerful and simple analytic
criterion, but it has two important caveats. First, because it is a
worst-case-scenario estimate, it yields no information on insta-
bility timescales for AMD unstable systems. For example, the
Solar System is AMD unstable, but most integrations (∼99%) of
the Solar System nevertheless remain stable over the Sun’s main
sequence lifetime (45). Second, the assumed secular model of the
dynamics ignores the effects of MMRs, which for closely packed
systems are typically nearby (e.g., ref. 46), and are an important
source of dynamical chaos (for a generalization of AMD stability
in the presence of MMRs in the two-planet case, see ref. 47).

†We note that the Hill-sphere scales as the planet–star mass ratio µ to the one-third
power. Other authors (e.g., refs. 20, 22, and 35) argue that a µ1/4 scaling is better
motivated. These scalings are close to one another, and given the poor performance of
such models (Results), we do not pursue this possible correction.
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Mean Exponential Growth Factor of Nearby Orbits. Several authors
have also used chaos indicators numerically measured from short
integrations as a proxy for instability (46, 48). This is appeal-
ing given that systems that go unstable typically exhibit chaotic
dynamics on shorter timescales. A widely used chaos indica-
tor is the Mean Exponential Growth Factor of Nearby Orbits
(MEGNO) (49). However, a planetary system can be chaotic yet
never develop destructive instabilities on astrophysically relevant
timescales. Additionally, and most importantly, short integra-
tions will fail to measure chaos on timescales longer than those
simulated, potentially misclassifying systems that destabilize on
long timescales.

Predicting Long-Term Stability
Point-source Newtonian gravity is scale-invariant. We exploit this
fact by expressing all masses relative to that of the central star
and all times and distances in units of the innermost planet’s
orbital period and semimajor axis, respectively.

Nondimensionalizing timescales in this way is important when
comparing systems with different absolute ages. For example,
the ∼40 My age of the HR 8799 planets, with an innermost
orbital period of∼40 y, only represents 106 orbits (10). For these
short timescales, numerical integrations‡ are within reach, and
SPOCK is not needed (10).

However, young multiplanet systems with long orbital peri-
ods are currently exceedingly rare in the exoplanet sample.
Population statistics and strong observational biases result in a
multiplanet sample predominantly with innermost orbital peri-
ods of ∼0.01 to 0.1 y, around stars that are several billion years
old. We are thus most often interested in stability over timescales
of 1011 to 1012 orbits, which are computationally prohibitive for
the number of candidate orbital configurations that typically
require evaluation.

One approach would be to frame the task as a regression
problem and predict an instability time for a given initial config-
uration. However, given that most systems have large dynamical
ages > 1011 orbits, for many applications, one is simply inter-
ested in a binary classification between short-lived and long-term
stable systems. We therefore pursue a simpler binary classifier
here and defer a regression algorithm to future work.

Any binary stability classification must specify a timescale, and
we choose a value of 109 orbits. Exoplanet systems may indeed
continually undergo instabilities and restructurings over their
lifetimes (e.g., refs. 30 and 51). In such a situation, the quick
removal of short-lived configurations naturally leaves systems
with instability times comparable to their ages (42). In that case,
requiring stability over 1011 orbits in a comparably aged sys-
tem could potentially throw out the true orbital configuration.
However, one could still reasonably reject configurations that
destabilize within< 109 orbits, given the low likelihood of finding
a system within < 1% of its lifetime of going unstable. Following
previous authors (28, 31), we define instability as when a pair
of planets start crossing their sphere of gravitational influence
(Materials and Methods).

For the remainder of the paper, we refer to configurations that
survive 109 orbits as stable and ones that do not as unstable.

Training SPOCK. We frame our task as a supervised machine-
learning problem. We begin by generating a large suite of
∼100,000 initial conditions and perform the computationally
expensive numerical integrations over 109 orbits to empirically
label each example as stable or unstable (Training Set). We take
80% of these examples as a training set for our classifier and use
the remaining 20% as a holdout set to test for potential overfit-

‡Computation timescales linearly with the number of orbits and requires ∼10 s per
million orbits with optimized algorithms (50) and current hardware.

ting with examples that were never encountered during training
(Training SPOCK).

The input to SPOCK is then a complete initial orbital con-
figuration: stellar and planetary masses, along with six orbital
elements or positions and velocities for each of the planets.
Our strategy for making a stability prediction is to first run
a computationally inexpensive integration of only 104 orbits
and, from this short snippet, numerically measure dynamically
informative quantities (Machine-Learning Model). Given that the
machine-learning model evaluation is effectively instantaneous,
this represents a speed-up factor of up to 105. This feature engi-
neering step allows us to take a high-dimensional set of inputs
and reduce it to 10 features that more compactly encode our
partial understanding of the dynamics. We then train a machine-
learning classifier to take this set of summary features as input to
predict the probability that the system is stable over 109 orbits.
This is illustrated in Fig. 1.

Following a previous proof of concept (52), we use the
gradient-boosted decision tree algorithm XGBoost (53). We
found it significantly outperformed simple random forest and
support-vector machine implementations. However, the spe-
cific choice of XGBoost was not critical. In an early compar-
ison, we found similar results training a deep neural network
(multilayer perceptron) on the same features (see also ref. 54
for an application to circumbinary planets). The most impor-
tant factor for performance was the adopted set of summary
metrics.

Going beyond exploratory machine-learning models (52) to a
robust classifier applicable to observed compact systems required
several qualitative changes. First, we relax their assumption of
equal-mass planets, and we extend their horizon of stability pre-
diction (107 orbits) by a factor of 100 to a relevant timescale
for real systems. Second, previous work (18, 19, 22) suggests
that instabilities in compact systems are driven by the over-
lap of MMRs. Rather than sampling phase space uniformly as
done in ref. 52, we therefore choose to generate our train-
ing dataset of three-planet systems in and near such MMRs.
This fills in our training sample at the locations in phase
space where the dynamical behavior is changing most rapidly,
and we suspect this identification of the dominant dynam-
ics is partially responsible for the excellent generalization to
more general systems presented in Training Set and Machine-
Learning Model. Fig. 2 shows our training set, plotting the period
ratio between the inner two planets against that of the outer
two planets.

Finally, the sharp changes in dynamics at each resonance (nar-
row lines visible in Fig. 2) make predictions challenging in the
space of traditional orbital elements (orbital periods, eccentrici-
ties, etc.). Indeed, we found that the model of ref. 52 performed
poorly near MMRs. In this study, we exploit analytical transfor-
mations (55, 56) that isolate the effect of a particular resonance
between a single pair of planets (Materials and Methods). This
allows us both to effectively sample the appropriate ranges in
period ratios and other orbital elements (like eccentricities) not
visible in the projection of Fig. 2 and to calculate several sum-
mary features in this smoother transformed space that makes
predictions simpler than in the original sharply punctuated space
of Fig. 2 (Machine-Learning Model).

Training Set. The two-planet case is analytically solvable (18–
20), while for 3+ planet systems, there is a qualitative change
toward a continuous range of instability times over wider inter-
planetary separations (21). We posit that instabilities driven by
MMR overlap in higher-multiplicity systems can be approxi-
mated by considering only adjacent planet trios. Our training set
thus consists only of compact three-planet systems, and we later
test the trained model’s generalization to higher-multiplicity sys-
tems (Generalization to Higher-Multiplicity Systems). This is an

18196 | www.pnas.org/cgi/doi/10.1073/pnas.2001258117 Tamayo et al.
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Fig. 1. A schematic illustrating how SPOCK classifies stability of a given initial configuration. The traditional approach numerically integrates the system
for 109 orbits, requiring roughly 10 h with current hardware. SPOCK runs a much shorter 104 orbit integration and, from it, generates a set of 10 summary
features (Table 1). These map to a point (white circle) in a 10-dimensional space, in which we have trained an XGBoost model to classify stability. SPOCK
outputs an estimated probability that the given system is stable over 109 orbits, up to 105 times faster than direct integration.

important empirical test since, if true, it implies a robustness
of our stability classifications to distant unseen planets. This is
crucial for reliable stability constrained characterization of exo-
planet systems and is consistent with previous numerical exper-
iments with equal-separation planets showing an insensitivity to
additional bodies beyond somewhat larger multiplicities of five
(21), as well as theoretical arguments showing that the Fourier
amplitudes of the perturbation potential due to an additional
planet fall off exponentially with separation (22, 35).

To enable application to real systems, we sample unequal-
mass, unequal-separation, mutually inclined, eccentric initial
orbital three-planet configurations for our training set, draw-
ing from parameter ranges typically encountered in the current
multiplanet sample.

In particular, the vast majority of 3+ planet systems have been
discovered by the Kepler and K2 missions as the bodies pass in
front of (transit) their host star.

This implies that nearly all such systems must be approxi-
mately coplanar; otherwise, the planets would not all cross in
front of the star from our vantage point (e.g., ref. 57). We there-
fore sample inclinations (log-uniformly and independently) from
a narrow range of [10−3, 10−1] radians (where the upper limit
has been extended somewhat beyond the mutual inclinations
typically inferred to also allow the modeling of additional [unob-
served] nontransiting planets). The azimuthal orientations of the
orbital planes (i.e., the longitudes of the ascending nodes) were
drawn uniformly from [0, 2π]. This corresponds to maximum
mutual-orbital inclinations of ∼11◦.

Most planets (∼85%) in the current sample of compact 3+
planet systems, where stability constraints are most informative,
are smaller than Neptune. We therefore choose to indepen-
dently and log-uniformly sample mass ratios to the central star
from 10−4 (approximately two times that of Neptune to the
Sun) down below the typical threshold of detectability to 10−7

(approximately one-third that of Mars to the Sun).
Any measure of dynamical compactness must incorporate

these planetary masses. This is often expressed in terms of the
separations between adjacent planets in units of their mutual
Hill radius (Eq. 1). We always initialize the innermost planet’s
semimajor axis at unity (since, as mentioned above, we work in
units of the innermost semimajor axis) and choose to sample the
separations between adjacent planets in the range from [0,30]
RH . This encompasses ∼80% of the currently known planets in
well characterized 3+ planet systems (58). For scale, 30 RH also
roughly corresponds to the wider dynamical separation between
the terrestrial planets in our solar system.

In particular, we randomly choose a planet pair (inner, outer,
or nonadjacent) and randomly sample their remaining orbital
parameters in or near a randomly chosen MMR within 30 RH ,
as described in detail in Materials and Methods. Finally, we
draw the remaining planet’s separation from its nearest neigh-
bor uniformly in the range [0,30] RH . This gives rise to the

extended lines in Fig. 2. Two of the planets are initialized at
a particular resonant ratio (e.g., 3/2 on the x axis), while the
third planet’s period can span a continuous range across differ-
ent configurations and is not necessarily strongly influenced by
MMRs.

Orbital eccentricities and phases for the resonant pair are
described in Materials and Methods, while the third planet’s
orbital eccentricity is drawn log-uniformly between the charac-
teristic eccentricities imparted when inner planets overtake their
outer neighbors (approximated as the ratio of the interplanetary
forces to the central force from the star) and the nominal value
at which adjacent orbits would cross

ecross =(ai+1− ai)/ai+1 . [2]

Pericenter orientations and phases along the orbit for the
remaining planet are drawn uniformly from [0, 2π]. Finally, we

Fig. 2. Training dataset of three-planet systems in and near MMRs, which
we posit drive instabilities in most compact multiplanet systems (18, 22, 31).
These cluster in lines at integer period ratios between adjacent planets. The
lifetimes of configurations within each of those lines can vary drastically
depending on additional parameters (masses, eccentricities, phases) not vis-
ible in this projection, causing stable (blue) and unstable (red) systems to
overlap.

Tamayo et al. PNAS | August 4, 2020 | vol. 117 | no. 31 | 18197
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reject any configurations that destabilize within 104 orbits. We
refer to this dataset of 113,543 systems as the “resonant dataset.”

Machine-Learning Model. We have a choice of what set of fea-
tures about each system to pass the XGBoost classifier. For
example, one could fully characterize a system by passing each
planet’s mass ratio with the star and its initial Cartesian posi-
tions and velocities. However, presumably it would be easier for
the algorithm if one transformed those initial conditions to more
physical parameters, like the orbital elements (semimajor axis,
eccentricity, etc.). We instead choose to run a computationally
inexpensive integration over 104 orbits and numerically measure
10 dynamically relevant quantities at 80 equally spaced outputs.

We experimented with different lengths of integrations and
number of outputs. Given an integration time series, our imple-
mentation takes a few tenths of a second to compute the sum-
mary features and evaluate the XGBoost model. This is about
the time required to run 104 orbits through N-body; so given
this fixed overhead, there is no computational gain in running
a shorter integration. We found that the performance gain from
longer integrations was marginal, but if the feature and model
evaluations were optimized (e.g., ported to C), a more careful
optimization of these parameters could be valuable.

For our first two features, we store the median of the MEGNO
chaos indicator (49) (over the last 10% of the short integration)
and its SD (over the last 80% of the time series to avoid initial
transients) as MEGNO and MEGNOstd, respectively. We also
record the initial values EMcross of ecross (Eq. 2) for each adja-
cent planet pair, and we use the smallest value to identify one
adjacent pair of planets as “near” and the other as “far” for these
and all remaining features.

The remaining six summary statistics capture the resonant
dynamics. In particular, in the near-resonant two-planet limit,
only one particular combination of the eccentricities (approxi-
mately their vector difference; Materials and Methods) matters
(55, 56),

e−≡ ei+1− ei , [3]

where ei is a vector pointing toward the i th planet’s orbital
pericenter, with a magnitude given by the orbital eccentricity.

Two of our summary features (one for each adjacent planet
pair) are the SD of |e−| over the timespan of the short 104

orbit integration, which we normalize through Eq. 2 to the
value required for that planet pair to cross. Qualitatively, this
can help the classifier differentiate between configurations that
oscillate close to a resonant equilibrium (small variations) and
are dynamically protected by the MMR, versus configurations
far from equilibrium where the MMR induces large-amplitude,
often destabilizing, variations.

For each adjacent planet pair, we also search for the strongest
j:j-k MMR within 3% of the pair’s period ratio and record its
nondimensionalized strength,

s =

√
mi +mi+1

M?

(e−/ecross)
k/2

(jni+1− (j − k)ni)/ni
, [4]

where the mi are the planet masses, and the ni are the orbital
mean motions (ni =2π/Pi with Pi as the orbital periods). This
is the appropriate expression when linearizing the dynamics,
omitting a period ratio-dependent prefactor that is compara-
ble for all of the nearby resonances (56). It is thus adequate
for identifying the strongest nearby MMR, and we store its
median value over the short integration as MMRstrengthnear
and MMRstrengthfar.

Finally, we record the SD of |e+|, a complementary combi-
nation of eccentricities to e− that is approximately conserved
(55, 56) in the single resonance, two-planet model (Materials and
Methods). Providing SPOCK with the variation of this putatively

conserved |e+| variable quantifies the validity of our simple ana-
lytic model. In particular, the analytical transformation is useful
along isolated lines in Fig. 2, where a single resonance dominates
the dynamics. The transformation breaks down (and |e+| can
vary significantly) at locations where resonances cross and more
than one resonance drives the dynamics, as well as in the blank
space between resonances in Fig. 2. However, these are typi-
cally also the easier regions to classify. Line crossings are regions
where resonances are typically strongly overlapped to drive rapid
chaos (59), and the dynamics vary more smoothly in the regions
between strong resonances. The complementarity and flexibility
of these 10 features allow SPOCK to reliably classify stability in
a broad range of compact configurations.

We calculate these 10 features (summarized in Table 1) for all
initial conditions in our resonant dataset and then use them to
train a gradient-boosted decision tree XGBoost model (53). We
adopt an 80 to 20% train-test split, performing fivefold cross-
validation on the training set. We optimized hyperparameters
to maximize the area under the receiver operator characteris-
tic (ROC) curve (Fig. 3) using the hyperopt package (60). We
provide our final hyperparameter values and ranges sampled in
a jupyter notebook in the accompanying repository, which trains
the model.

In Table 1, we also list the relative feature importances in our
final model, which measure the occurrence frequency of different
features in the model’s various decision trees. All provide com-
parable information, partially by construction. We started with
a much wider set of 60 features, iteratively removing less impor-
tant ones. This marginally decreased the performance of our final
classifier, but this is compensated by the improved interpretabil-
ity of our simplified feature set. While the feature importances
are close enough that one should not overinterpret their rela-
tive values, it is clear that the resonant features are providing
important dynamical information.

Results
Holdout Set Performance. The accuracy of any classifier depends
on the dataset. For example, it would be much harder to deter-
mine stability over 109 orbits on a set of configurations right at
the boundary of stability, which all went unstable between 108

and 1010 orbits, than on a dataset of configurations that either
go unstable within 103 or survived beyond 1015 orbits. Thus, to
avoid any straw man comparisons to previous work, we follow a
parallel process of training an XGBoost model using the quanti-
ties (features) considered by previous authors. This allows each
model to optimize its thresholds for the training set at hand, pro-
viding a fair comparison. In particular, for “N-body,” we ask the
XGBoost model to predict stability based on the instability time

Table 1. Summary features in our trained model, ranked by their
relative importance

Feature name Description Importance

EMcrossnear Initial orbit-crossing e− value 6,844
MMRstrengthnear Median strength of nearest MMR 6,568
MMRstrengthfar Median strength of nearest MMR 6,392
EPstdnear SD of e+ mode 6,161
EMfracstdfar SD of e− mode/EMcross 5,815
EMfracstdnear SD of e− mode/EMcross 5,509
EMcrossfar Initial orbit-crossing e− value 5,077
EPstdfar SD of e+ mode 5,009
MEGNOstd SD of chaos indicator 4,763
MEGNO Chaos indicator 4,350

See Machine-Learning Model for discussion. The smallest value of
EMcross is used to label one adjacent pair of planets as “near” and the other
as “far.”

18198 | www.pnas.org/cgi/doi/10.1073/pnas.2001258117 Tamayo et al.
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YFig. 3. Comparison of the performance of SPOCK against previous models
on a holdout test set from our training data (Materials and Methods). Plots
TPR (fraction of stable systems correctly classified) vs. FPR (fraction of unsta-
ble systems misclassified as stable). All models can trade off TPR vs. FPR by
adjusting their threshold for how conservative to be before labeling a sys-
tem as stable. The area under the curve (AUC) for each model is listed in the
legend in parentheses. A perfect model would have a value of unity, and
random guessing (dashed black line) would have AUC = 0.5. The blue N-
body curve gives an empirical estimate of the best achievable performance
on this dataset. At an FPR of 10%, SPOCK correctly classifies 85% of stable
systems; MEGNO, 49%; AMD, 36%; and Hill, 30%. For a discussion of the
various models, see Previous Models.

measured in the shadow integration (N-Body). For “MEGNO,”
we measure the chaos indicator over the same short 104 orbit
integration as our model and pass this as a single feature to a sep-
arate XGBoost model. For “AMD,” we train on two features: the
system’s total AMD as a fraction of the critical AMD needed for
a collision between each pair of adjacent planets (44). Finally, for
“Hill,” we train an XGBoost model on the separations between
adjacent planets as a fraction of their mutual Hill sphere radius
(Eq. 1).

Using a holdout test set of ∼20,000 integrations, we present
in Fig. 3 the various models’ ROC curves. ROC curves plot the
classifiers’ true-positive rate (TPR) (the fraction of stable sys-
tems correctly identified) vs. the false-positive rate (FPR) (the
fraction of unstable systems incorrectly labeled as stable). Each
model returns an estimated probability of stability and can trade
off TPR vs. FPR by adjusting its threshold for how conservative
it is before it labels a system as stable. A perfect model would
lie in the top left corner, and random guessing would follow the
dashed black line.

Different applications will have different requirements. For
example, stability considerations could be important in inferring
the underlying multiplicity distribution of planets in multiplanet
systems detected using short time baselines of observation (e.g.,
with the Transiting Exoplanet Survey Satellite [TESS] mission).
In that limit, it becomes important to account for the fact that
it becomes harder to stably fit higher-multiplicity systems into
a short observing window. Such studies estimate the underlying
planet occurrences by correcting for various observation biases,
typically injecting fake planetary systems into data to model the
detection efficiency across the parameter range.

Injecting self-consistent, stable multiplanet configurations re-
quires a low FPR. If a system is unstable, one wants to be con-
fident that it will be labeled as unstable and thrown out of the
analysis. If one decided that a 10% false-positive was accept-
able, one could read off the corresponding TPR from Fig. 3.
N-body would correctly label all stable systems, while SPOCK
correctly identifies 85%. MEGNO, AMD, and Hill are not com-
petitive, with TPR values ≤ 50%. MEGNO and SPOCK are
roughly a factor of 105 times faster than N-body, while AMD
and Hill sphere-separation models are effectively instantaneous
since they are calculated directly from the initial conditions.

It is important to note that this is an unusually demanding
test dataset, asking models to make predictions at sharp reso-
nances where the dynamical behavior changes drastically with
small changes in parameters (Fig. 2). In reality, our solar system
and most exoplanet systems are not close to such MMRs (57), so
one should expect the performance on typical systems to be bet-
ter for all models than what is shown in Fig. 3. This approach of
focusing on the most problematic resonant systems differs from
the more uniform phase-space coverage used in previous work
and, we expect, should yield more robust, generalizable mod-
els with fewer training examples. Conversely, the generalization
of such a model trained at sharp resonances to the remaining
phase space is a strong test of whether MMRs are indeed domi-
nantly responsible for instabilities in compact planetary systems
(Generalization to Uniformly Distributed Systems).

We now consider why previous models performed poorly.
First, while the Hill sphere separations are demonstrably impor-
tant quantities (21, 28, 31), they do not carry any information on
other important parameters like the orbital eccentricities. One
therefore should not expect a simple two-parameter classifier to
yield accurate predictions, particularly near resonances where
the behavior depends sensitively on combinations of several
different orbital elements.

Second, AMD stability has been shown to be useful in compact
two-planet systems (44, 47) and can be related to the analyti-
cal Hill stability limit in such systems (61). While it still retains
important dynamical information in the 3+ planet case, we see
that by itself it is a poor discriminant of stability. The most
obvious problem given our MMR dataset is that AMD stabil-
ity applies in the secular limit, where the effects of MMRs are
ignored. As refs. 44 and 56 argue, while MMRs alter the AMD,
they tend to induce oscillations that average out over a reso-
nant cycle. However, this is only true for an isolated MMR;
once several resonances overlap and motions become chaotic,
AMD is not necessarily conserved. While this is not a concern
for two-planet systems in the AMD-stable region (61), our inte-
grations show empirically that there are many opportunities for
MMR overlap in compact systems with three or more planets,
and AMD stability is no longer a stringent criterion.

One might argue that this is asking more from AMD stability
than it offers, given that it is supposed to be a worst-case scenario
estimate. It only guarantees stability if the total AMD is below
the value needed for collisions. Above the critical AMD, colli-
sions are possible, but AMD stability makes no prediction one
way or another. However, even if we only consider the ∼19% of
systems in our resonant test set that AMD guarantees are stable,
only ∼49% actually are.

Finally, for the MEGNO model, a small fraction (∼2%) of the
systems that it found to be chaotic (taken as a value of MEGNO
after 104 orbits > 2.5) are nevertheless stable. Even if a system
is chaotic (i.e., nearby initial conditions diverge exponentially), it
still needs enough time for the eccentricities to diffuse to orbit-
crossing values. For example, the GJ876 system has a Lyapunov
(chaotic) timescale of only about 7 y, despite the system being of
order a billion years old (62). Determining that an orbit is chaotic
is therefore strongly informative but not sufficient to determine
long-term stability. More problematically, 55% of the systems
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with MEGNO values consistent with being regular (nonchaotic)
were, in fact, unstable. This is because MEGNO can only mea-
sure chaos on the timescale of the short integration, so systems
with Lyapunov times longer than 104 orbits can nevertheless go
unstable and be misclassified by MEGNO alone. In summary,
determining that an orbit is chaotic with MEGNO in a short
integration is typically a reliable indicator that the system is not
long-term stable, but a MEGNO value consistent with a regular
orbit is not a robust measure of long-term stability.

By combining MEGNO with features capturing the MMR
dynamics, SPOCK substantially improves on these previous
models.

Generalization to Uniformly Distributed Systems. An important
concern with machine-learning models is whether they will gen-
eralize beyond the training dataset. Since there are no theoretical
generalization bounds for modern techniques like decision trees
and neural networks, measuring generalization to a holdout set
and out-of-distribution data are essential. In particular, have they
learned something meaningful about the underlying physics, or
have they simply memorized the particulars of the training set?
We perform two empirical tests.

First, we generate a complementary dataset of 25,000 uni-
formly sampled configurations, spanning a continuous range in
period ratios, and not necessarily close to MMRs. This is more
representative of typical exoplanet systems that have been dis-
covered, with one important difference. We choose our sampling
ranges to yield roughly a comparable number of stable and unsta-
ble configurations (∼40% were stable), while observed systems
are naturally biased toward stable regions of phase space since
unstable configurations are short-lived.

The procedure and parameter ranges are the same as in our
training set, except we now sample all planets’ orbital elements
like we did the third planet above (separations uniform from
[0,30] RH , eccentricities log-uniform up to the value at which
orbits cross, and all phases uniformly from [0, 2π]). We plot the
projection of this “random dataset” into the space spanned by
the Hill-radius separations between adjacent planets in Fig. 4,
Top, where they uniformly fill the plane.

It is easier to predict stability on this dataset for at least
two important reasons. First, most configurations are not par-

ticularly close to strong MMRs where the dynamical behavior
changes sharply. Second, while in the resonant training dataset,
we restricted ourselves to systems that survived longer than
our short integrations of 104 orbits, in reality, many unsta-
ble configurations will be extremely short-lived. In our random
dataset, we therefore allow for any instability time, which is
more representative of typical applications. This will in partic-
ular significantly boost the performance of both the SPOCK and
MEGNO models, since they will be able to confidently classify
the configurations that go unstable within the span of their short
integrations.

We plot the performance of all models (trained on the res-
onant dataset; Fig. 2) on our random dataset in Fig. 4. All
models improve as expected, particularly SPOCK and MEGNO.
At an FPR of 10%, N-body correctly classifies 99.8% of sys-
tems; SPOCK, 94%; MEGNO, 87%; AMD, 74%; and Hill, 39%.
Over the range of FPRs in Fig. 4, SPOCK correctly labels
approximately half of the systems misclassified by MEGNO.

The fact that our SPOCK classifier, trained on a discrete set of
near-resonant systems (Fig. 2), performs strongly on this uniform
dataset supports our assertion that instabilities in compact mul-
tiplanet systems are dominantly driven by MMRs. If instead we
let SPOCK train on 80% of our random dataset and test on the
remaining 20%, the TPR quoted above only rises by ∼2%, sug-
gesting our model can robustly classify a wide range of compact
three-planet systems.

Generalization to Higher-Multiplicity Systems. Influenced by pre-
vious work (21), we hypothesized that the simplest case for
understanding instabilities within 109 orbits in multiplanet sys-
tems is that of three planets. A natural question is therefore how
well our model, trained on three-planet systems, generalizes to
higher-multiplicity cases.

We test our model’s generalization on previously published
numerical integrations of five equal-mass planets on coplanar,
equally spaced, and initially circular orbits (31). This is in stark
contrast to our systems of three unequal-mass planets on mutu-
ally inclined, unevenly spaced, and eccentric orbits. Indeed, the
integrations only varied the separation between adjacent plan-
ets, corresponding to a diagonal line from the bottom left to the
top right of Fig. 2. This passes through the many intersections

Fig. 4. Top shows the projection of our “random”
dataset of 25,000 configurations, uniformly sam-
pling the separation between adjacent planets. This
is more representative of discovered compact exo-
planet systems than the resonant training dataset.
Bottom is analogous to Fig. 3. At an FPR of 10%,
SPOCK correctly classifies 94.2% of stable systems,
despite having been trained on a different dataset
of near-resonant configurations (Fig. 2).

18200 | www.pnas.org/cgi/doi/10.1073/pnas.2001258117 Tamayo et al.
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between vertical and horizontal MMR lines, where our analytic
transformations (assuming the influence of only a single MMR)
are most problematic. All other parameters were fixed, so there
are very few examples in our much higher-dimensional training
set that fall near this one-dimensional line, rendering it a partic-
ularly stringent test of our model. In particular, if SPOCK had
simply memorized the particulars of our training set, it should
not be able to effectively predict on systems drawn from a very
different configuration distribution.

As a simple prescription for predicting stability on 4+ planet
systems using SPOCK, we feed all adjacent trios to our three-
planet classifier and retain the lowest stability probability. This
is a simplification but should provide a reasonable approxima-
tion in cases where instabilities are driven by perturbations on
an MMR between a particular pair of planets. We argue this
typically is the case in compact systems.

Fig. 5, Top shows the instability time recorded by the 17,500
N-body integrations of ref. 31, plotted against the separation
between adjacent planets (normalized by their mutual Hill radius
[Eq. 1]). As above, we color-code systems that went unstable
within 109 orbits as red and stable systems as blue. While, above,
we considered binary classification as stable or unstable, in Fig. 5,
Bottom, we now plot the probability of stability estimated by
SPOCK for each of the initial conditions in order to better visu-
alize the model’s sensitivity to the structure in instability times
visible in Fig. 5, Top (each point along any of the SPOCK ROC
curves above corresponds to the TPR and FPR obtained when
setting a particular stability probability threshold).

We see that SPOCK gives reliable results, despite having
been trained on very different configurations of resonant and
near-resonant configurations of fewer planets. Fig. 5, Top also
shows that SPOCK recognizes each of the dips in instability
times, which correspond to the locations of MMRs (31), and
adjusts its stability probability accordingly. Misclassifications are
largely limited to the boundaries between stable and unstable
configurations in Fig. 5, Top. We note that near this boundary,
classification is ambiguous—some of these systems would also
be “misclassified” by direct N-body integrations. Using the same
threshold as in Holdout Set Performance (chosen to yield an
FPR on our resonant holdout set of 10%), the TPR across this
test set of 17,500 integrations is 94%, with an FPR of 6%. The
fact that our model trained on three-planet systems generalizes
to higher multiplicities supports our assertion at the outset that
planet trios are prototypical cases that can be extended to higher
numbers of planets.

An Application. As an example, we considered the characteriza-
tion of four observed compact three-planet systems (Kepler-431,
Kepler-446, EPIC-2108975, and LP-358-499), none of which is

near strong MMRs. We again focus on compact systems, since
we should be able to reject a larger range of masses and orbital
eccentricities for these more delicate configurations. All four
systems gave similar results, so we focus on Kepler-431, a sys-
tem of three transiting Earth-sized planets (which gave the
second-worst performance).

The planetary transits across the host star strongly constrain
the planets’ orbital periods and physical sizes. The masses and
especially the orbital eccentricities remain highly uncertain. As
a simple exercise, we sample the planetary masses from a mass–
radius relationship (63) and sample eccentricities log-uniformly
between [10−4, 0.18] for each of the three planets indepen-
dently (with the upper limit representing the value at which
the inner two orbits would cross). Since these are transiting
planets, we draw inclinations from an edge-on configuration uni-
formly from 10−3 radians to the angular size of the star as seen
from the planet, R?/ai (with R? the stellar radius and ai the
ith planet’s semimajor axis). All remaining angles are drawn
uniformly from [0, 2π], and we assume a stellar mass of 1.07
solar masses. We draw 1,500 configurations in this way, and for
each one, run both direct N-body integrations and our SPOCK
classifier.

Adopting the same stability probability threshold from Hold-
out Set Performance, we obtain the results plotted in Fig. 6. To
visualize the phase space, in the top row of Fig. 6, we provide
polar plots of the middle planet’s eccentricity vector (with the
distance from the origin giving the eccentricity and the polar
angle the direction toward pericenter). Fig. 6, Top Left color
codes stable and unstable configurations obtained through direct
N-body. Fig. 6, Top Right shows the predictions from SPOCK,
yielding an FPR of 9% and TPR of 97%.

While the expected trend of instability toward high eccen-
tricities is born out in the top row of Fig. 6, many unstable
configurations remain near the origin at zero eccentricity due to
other system parameters not visible in this projection. However,
by developing a classifier with a comparatively small number
of physically motivated features, we can gain insight into the
stability constraints by projecting the configurations onto the
transformed resonant space used by the model. In the bottom
row of Fig. 6, we consider the eccentricity modes e− (Eq. 3)
that dominate the MMR dynamics between each adjacent pair
of planets (first and second planet on the x axis; second and
third on the y axis). We see that our feature space incorporat-
ing our analytical understanding of the resonant dynamics much
more cleanly separates the stable and unstable systems, even in
this two-dimensional projection. This both visually shows how
our engineered features help the algorithm’s performance and
clarifies the particular combinations of parameters specifically
constrained by stability.

Fig. 5. Generalization of SPOCK (trained on eccen-
tric, inclined, unequally spaced, unequal-mass three-
planet systems in and near MMRs) to integrations
from ref. 31 of initially circular, coplanar, equally
spaced, equal-mass five-planet systems. The separa-
tion between all adjacent pairs of planets increases
along the x axis. Top shows the instability times mea-
sured by direct integration, with dips corresponding
to MMRs (31). Bottom shows the stability proba-
bility predicted by SPOCK. Taking the probability
of stability threshold of 0.34 used in Holdout Set
Performance, the true-positive rate is 94% and the
false-positive rate 6% on this dataset.

Tamayo et al. PNAS | August 4, 2020 | vol. 117 | no. 31 | 18201
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Fig. 6. Top Left and Top Right are polar plots of
the middle planet’s eccentricity vector in the Kepler
431 compact three-planet system (distance from ori-
gin is the eccentricity; polar angle, the direction
toward pericenter). Top Left color codes 1,500 stable
and unstable configurations through direct integra-
tion, while Top Right shows the stability predictions
from SPOCK—96% of points agree. The bottom row
projects the configurations into the transformed
space used by our model features (see Machine-
Learning Model). The stability boundary separates
much more cleanly in this space that incorporates
our understanding of the resonant dynamics, show-
ing visually why our engineered features help the
algorithm’s performance.

Finally, we note that in this closely packed system, stabil-
ity is indeed constraining. We constrain the free eccentricities§

of the inner and outer pair of planets to be below 0.051 and
0.053, respectively (84th percentile limit). Such eccentricity lim-
its, which constrain the degree of dynamical excitation in the
system’s past (64, 65), are significantly stronger than those
inferred from radial velocity (e.g., ref. 66) or transit duration
measurements (67, 68) for such low-mass planets, which dom-
inate the population (e.g., ref. 69). Within a factor of a few,
this approaches the exquisite constraints achievable by modeling
transit-timing variations (TTVs), which are typically only mea-
surable when planets are close to strong MMRs, with accurate
photometry, and with long observation baselines (70). In partic-
ular, TTVs are not detected in any of the four Kepler systems
we considered. TTV modeling has been an extremely produc-
tive method with the long observation baselines of the Kepler
mission (e.g., refs. 14 and 16). However, the much shorter observ-
ing windows of Kepler’s successor, the TESS, implies that only
∼10 planets are expected to be constrained by TTVs (71) during
its prime mission. This places stability constrained characteri-
zation as a powerful complementary method for understanding
multiplanet systems.

Limits. Finally, we present an instructive case where SPOCK
fails, for systems constrained by above-mentioned TTVs. Tran-
siting planets that do not interact with one another would pass in
front of their host stars like perfect clocks with a constant orbital
period. However, their mutual gravitational tugs can cause tran-
sit times to periodically pull ahead and fall behind. This is a
particularly strong effect near MMRs, which induce sinusoidal
TTVs (70, 72).

We considered six systems that exhibit TTVs and, in particular,
the three-planet Kepler-307 system (73) (outermost planet only

§We quote free eccentricities typically quoted for TTV constraints Z≈ |e−|/
√

2 (see
Materials and Methods for a more direct comparison).

a candidate). In all cases, the transit times have been fit to infer
planet masses and orbital parameters with Markov chain Monte
Carlo (MCMC). We choose to sample 1,500 configurations from
the resulting posterior, and again run N-body integrations to
compare with SPOCK predictions as in An Application.

Interestingly, SPOCK fails on all of them. In the case of
Kepler-307, the FPR is 87% (Fig. 7). An important cost to
consider with complex models is the difficulty in diagnosing prob-
lems such as these when they come up. Our original SPOCK
model generated 60 summary features from short integrations,
and in fact slightly outperformed our final adopted model on
the holdout set in Fig. 3. However, we chose to trade these
marginal performance gains for the improved interpretability of
our smaller set of 10 physically relevant features, and this reveals
the reason for the poor performance in Fig. 7.

The inner two planets in this system are near a 5:4 MMR
(period ratio ∼1.255), while the third planet is significantly
further separated (period ratio between the outer two planets
∼1.79). As mentioned above, the MMR dynamics between a pair
of planets are driven by a particular combination of the orbital
eccentricities e− (Eq. 3). In this case, because the observed TTVs
are driven by a 5:4 MMR between the inner two planets, the
TTVs observed in the data specifically constrain this planet pair’s
e− mode. If we again transform the space in the top row of Fig. 7
to that spanned by the e− modes for both adjacent pairs like in
Fig. 6, we see that the sample of configurations collapses to a thin
vertical line.

The problem is therefore that while SPOCK would typically
help to constrain e− by ruling out unstable values, the MMR-
driven TTVs have already allowed the MCMC fit to narrow down
the e− mode for the inner pair of planets to an exquisitely narrow
range of 0.0088± 0.0004. Thus, samples from the MCMC pos-
terior have already removed configurations along directions in
which SPOCK has strong discerning power, leaving only points
along directions that are difficult to separate from the short
integrations. The “MEGNO” model similarly fails with an FPR
of 57%.

18202 | www.pnas.org/cgi/doi/10.1073/pnas.2001258117 Tamayo et al.
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Fig. 7. Case of the three-planet Kepler-307 system,
where SPOCK predictions fail. We sample configu-
rations (points) from the posterior of a MCMC fit
to the observed TTVs in the system. The top and
bottom rows are analogous to Fig. 6. Transform-
ing to the two-body resonant variables used by
SPOCK in the bottom row shows the reason for the
poor performance. The previous TTV fit has con-
strained the eccentricity mode dominantly driving
the MMR dynamics of the inner two planets to
an extremely narrow range. This leaves points only
along a direction that does not strongly influence
the short integrations we use to generate features.

If we constrained the above system blindly, across the full
range of possible eccentricities, SPOCK’s performance would
be comparable to the results in Holdout Set Performance. In
this case, however, observational data has strongly constrained
the planets’ resonant dynamics, leaving only configurations with
very similar SPOCK features and leading to unreliable predic-
tions. Presumably, improved models would incorporate addi-
tional features that better separate the stable and unstable
configurations in Fig. 7. Such SPOCK failures should be rare,
but TTV-constrained configurations are an important, instruc-
tive counterexample. One can test for such situations empirically
by looking for clustering of configurations in SPOCK’s feature
space. An important advantage of SPOCK’s physically meaning-
ful features is that it facilitates the interpretation of any such
clusterings.

Conclusion
We have presented the SPOCK, a machine-learning model capa-
ble of classifying stability of compact 3+ planet systems over 109

orbits. SPOCK is up to 105 times faster than direct N-body inte-
gration and is significantly more accurate (Figs. 3 and 4) than
stability predictions using AMD stability (44), Hill-sphere sepa-
rations (e.g., refs. 21, 22, and 26), or the MEGNO chaos indicator
(e.g., ref. 46).

This computationally opens up the stability-constrained
characterization of compact multiplanet systems, by rejecting
unphysical, short-lived candidate orbital configurations. In the
Kepler-431 system with three tightly packed, approximately
Earth-sized planets, we constrained the free eccentricities of the
inner and outer pair of planets to both be below 0.05 (84th
percentile upper limits). Such limits are significantly stronger
than can currently be achieved for small planets through either
radial velocity or transit duration measurements and within a
factor of a few from TTVs. Given that the TESS mission’s
typical 30-d observing windows will provide few strong TTV
constraints (71), SPOCK computationally enables stability con-
strained characterization as a productive complementary method

for extracting precise orbital parameters in compact multiplanet
systems.

Our training methodology and tests also clarify the dynamics
driving instabilities in compact exoplanet systems. Our model,
trained solely with configurations in and near MMRs, accurately
predicts instabilities within 109 orbits across the full phase space
of typical compact systems (Generalization to Uniformly Dis-
tributed Systems). This is strong confirmation that rapid instabil-
ities, on timescales much shorter than the typical ∼ 10−11-orbit
ages of observed systems, are dominantly driven by the overlap
of MMRs (18, 22, 31).

Instabilities can also occur on longer timescales through the
overlap of secular resonances. As opposed to MMRs between
planets’ orbital rates, secular resonances represent commensu-
rabilities between the much slower rates at which orbits precess.
This is the case for our solar system, which has a dynamical life-
time > 1010 orbits (39, 45, 62). SPOCK is not trained to detect
such slow instabilities but self-consistently classifies the solar
system as stable over 109 orbits.

Recent work (74) suggests that instabilities in compact sys-
tems are driven through the overlap of such secular resonances.
While this may seem in tension with our focus on MMRs, this
paints a self-consistent picture. Short-lived configurations elim-
inate themselves, rearranging and dynamically carving out the
distribution of planetary systems that survive to the present day.
This idea has been advanced from several perspectives (30, 51,
75–77). MMR-driven instabilities happen quickly compared with
the typical ages of observed systems, leaving today only systems
that destabilize through slower secular instabilities. This also
clarifies that secular analyses such as AMD stability are valuable
dynamical classifications for observed systems (44), despite their
poor identification of short-term instabilities (Results).

We also showed that short-term, MMR driven instabilities are
local, as expected from the lack of strong MMRs beyond period
ratios of 2:1 (22, 78). In particular, we showed that our model,
trained on three-planet systems, can be applied to adjacent trios
of planets in higher-multiplicity systems to classify stability over
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Fig. 8. Phase portrait of the dynamics near a MMR. See Materials and
Methods for discussion.

109 orbits. This implies that stability constrained characterization
is robust against distant, unseen planets (an important consider-
ation for detection methods heavily biased against finding such
bodies). This is not the case for longer-timescale secular instabil-
ities. For example, exodynamicists detecting only the inner solar
system would infer a much more stable system than is actually
the case (e.g., refs. 39 and 62).

By identifying the dominant dynamics driving the instabilities
we aimed to classify, and incorporating this directly into both the
training set and the set of features used for our machine-learning
model, we have trained a robust classifier of multiplanet stabil-
ity over 109 orbits. This approach also allowed us to both test
our assumptions and understand regions of phase space where
SPOCK should fail. This can be a useful blueprint for exploit-
ing the often extensive domain knowledge available in scientific
applications of machine learning.

We make our ∼1.5 million CPU-hour training set publicly
available (79) and provide an open-source package, documenta-
tion, and examples (https://github.com/dtamayo/spock) for effi-
cient classification of planetary configurations that will live long
and prosper.

Materials and Methods
Resonant Dataset. We initialize our near-resonant pair of planets by first
identifying all of the first-order (n : n− 1) and second-order (n : n− 2) MMRs
in the range from [3.5, 30] mutual Hill radii ([3.5, 60] mutual Hill radii for
nonadjacent planets),¶ which represent the strongest set of resonances (38).
We then randomly assign the pair to one of the resonances in this list.

A pair planets near a first-order n : n− 1 MMR, whose orbits evolve in
a 12-dimensional phase space, can to excellent approximation be reduced
to a 2-dimensional dynamical system through a transformation of vari-
ables involving several conserved quantities (55). This transformation has
recently been generalized for n : n− 2 and higher-order MMRs (56) (see also
ref. 20).

First, at low eccentricities, the eccentricity and inclination evolution
decouple. Therefore, we sample the planets’ orbital inclinations and orbital
plane orientations randomly as described in Generalization to Uniformly
Distributed Systems. For the eccentricities, the intuition is that only one
mode (or combination) matters. In particular, a combination Z+, approxi-
mately the “center-of-mass” eccentricity vector, is conserved, while Z drives
the dynamics (e.g., ref. 56),

√
2Z≈ e2− e1≡ e−, Z+≈

m1e1 + m2e2

m1 + m2
≡ e+≈ constant, [5]

where e1 and e2 are the planets’ orbital eccentricity vectors, and m1 and
m2 are their respective masses. The Z and Z+ vectors incorporate additional
coefficients on the eccentricity vectors that depend on the particular MMR.
With the exception of the 2:1 MMR, these coefficients are within ∼10%
of unity (19) and converge to one as the period ratio shrinks (56). Models

¶The lower limit is the Hill stability limit (80) was chosen to avoid immediate instabilities.

trained with (Z, Z+) exhibit similar performance to ones trained with (e−,
e+), so we adopt the latter to avoid discontinuities in our features near
discrete resonances.

Finally, one can combine the period ratio and other orbital parameters to
define a metric for proximity to the resonance. The closer the system is to
the resonance, the higher e− will be forced by the MMR. We sample the rel-
evant range in proximities to resonance by drawing the eccentricity forced
by the resonance eforced (Fig. 8) log-uniformly from the minimum value (pre-
dicted by the analytic theory to yield an isolated resonant island) (56) to the
nominal orbit-crossing value ecross (Eq. 2). Choosing eforced defines a family
of different possible trajectories, depending on the remaining initial con-
ditions, which we plot in Fig. 8. The variable on the x axis is the resonant
angle φ, which is the particular combination of the pericenter orientations
and phases corresponding to the given MMR—physically, it tracks the posi-
tion at which conjunctions occur, where planets most strongly interact. The
choice of eforced, or proximity to resonance, moves the entire resonant island
(bounded by the black curve) up and down.

The final important parameter is then the free eccentricity efree, which
measures the distance from the resonant equilibrium (magenta dot near
the center of Fig. 8). A system initialized with efree = 0 at the center of the
island will remain at the equilibrium. Configurations initialized with small
nonzero values of efree will oscillate (librate) around the equilibrium like a
pendulum. There is a critical value of efree beyond which the system will no
longer librate around the equilibrium but instead circulates. The boundary
trajectory, which forms a “cat’s eye” splitting these two types of behaviors,
is called the separatrix (black curve in Fig. 8).

To fill in this range of behaviors, we sample efree log-uniformly from
[3× 10−3, 3] of the distance to the separatrix along φ=π. In this way, the
resonant pair of planets spans the range from being in resonance to being
outside the resonant region, but still having their dynamics strongly influ-
enced by the MMR. Many of the planets discovered by the Kepler mission
that exhibit TTVs lie in the region near (but outside) strong MMRs (e.g.,
ref. 81). When the drawn efree is large enough to move beyond the bottom
of the plot, we wrap around and initialize the system at φ= 0. This allows
us also to sample the other island shown in green in Fig. 8, which has an
equilibrium at small values of e−. Once the initial conditions are allowed to
evolve, they fill the space in Fig. 8, as shown by the few plotted sample tra-
jectories. For the conserved quantity e+, we sample it log-uniformly within
the same range as eforced. We draw the remaining nuisance angles uniformly
from [0, 2π].

We initialized the resonant pair of planets using the open-source celmech
package (https://github.com/shadden/celmech), which is based on ref. 56.
celmech includes an application programming interface (API) for initializing
resonant orbital configurations from the above parameters, and we include
the scripts and random seeds used to generate our training sets in the data
deposition accompanying this paper.

Numerical Integrations. All integrations were performed with WHFast (32),
part of the REBOUND N-body package (82). We adopted a timestep of
∼3.4% of the innermost planet’s orbital period. If any planets’ Hill spheres
overlapped, the simulation was ended and the instability time recorded.
The specific halting condition is not important (80), as once Hill spheres
start crossing, the system becomes an orbit-crossing tangle on orbital
timescales.#

The integrations analyzed in this work were saved in the REBOUND Sim-
ulationArchive format, which enables exact, machine-independent repro-
ducibility of results (83). We provide instructions and the scripts necessary to
reproduce the figures in the accompanying data deposition.
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#It might still take a long time for small planets close to their host star to find one
another and collide (34); however, in the context of applying stability constraints, we
are usually interested in the time to instability defined such that the system architecture
becomes inconsistent with the typically observed multiplanet system of approximately
planar, concentric near-circular orbits.
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