Turtle Ant Movement and Nest Choice on Modular Tree Branches
By Kenneth Mitchell, Carter Moyer, Simon Woodside, Matina Donaldson-Matasci
Department of Biology, Harvey Mudd College, Harvey Mudd College, California USA

Introduction
Arboreal ants build networks connecting nests and food sources along pathways constrained by tree branching patterns[1]. Little is known about arboreal ant networks and the mechanisms by which they are formed[2]. Here, we investigate (1) whether the arboreal turtle ant Cephalotes varians displays individual turning biases when navigating physical branches, and (2) whether such biases can explain which nesting cavities colonies choose to inhabit. We study how individual C. varians ants navigate a modular asymmetric branching structure, and how colonies explore the same structure to choose among multiple identical nests.

Questions
Do individual C. varians ants display turning biases based on the geometry of their tree structure?

Can we explain a colony’s nest choice from individual biases?

Modular Tree Design

Figure 1: We constructed our tree branch maze out of 31 modular branching junctions of two types (left and right handed junctions). Each junction has a main branch, primary branch, and secondary branch. The main branch (one of four diameters) splits into a sharp and shallow turn: the primary branch (same diameter as main) at 10°, and the secondary branch (75% diameter) at 70°.

Experiments

Figure 2: Eight nests (noted with alpha-numeric codes and colors) were placed equidistant from the ant’s starting location on the maze—the short offsetshoot in the middle of the maze (red arrow). An equal amount of food and water was located near each nest. The maze is attached to a thick wooden block or “trunk” (grey square) adjacent to nest B3.

Figure 3: The maze was positioned in a box which also contained the ant colony’s smaller, self-contained habitat. For 62 individual experiments, one ant at a time was brought via a string hanging from the trunk. However, while the ABM does project a bias for B3 visitation, ants approaching from the main, primary, or secondary branch were equally likely to take either path, as were ants approaching from a secondary branch. Because the trunk is at the end of a series of such turns, this could explain why the ant colonies consistently chose to congregate in nest B3 which is adjacent to the trunk. However, while the ABM does project a bias for B3 visitation, there are other discrepancies in first-nest visitation between the ABM and the experimental data. Because the model assumes that turning biases are only influenced by junction handedness and the direction of approach, this discrepancy suggests that real ants’ turning choices could be influenced by some other factor, such as the branch size or the position of the junction in the overall structure.

In the colony experiments, nests B3 and F1 were most likely to be chosen (Figure 5). These nests lie at each end of the branching structure with a thicker, nearly straight path between them. In the individual experiments, ants approaching a junction from the main branch were equally likely to take either path, as were ants approaching from a secondary branch. However, ants approaching from the primary branch were more likely to continue straight down the main branch, rather than making a sharp turn onto the secondary branch (binomial GLMM, odds ratio 0.35, 95% CI 0.22-0.56). The ABM based on these biases projects that most individual ants will visit B3 first (Figure 7), which is one of the nests individual ants were most likely to visit first (Figure 8).

Figure 4: An agent based model was created in Python using the Mesa agent-based modeling framework on a NetworkX network environment. Ants in the model navigate this tree according to turning biases extracted from statistical analysis of the experiments. Probabilities of every turn type were calculated with a binomial GLMM in R where the probability of making a turn type was explained by the type of approach (see Figure 6). At each time step, ants make one move in any of three directions from their current node, until they reached a tip labeled A1-H3, without interacting and with no goal or memory.

Conclusion
In the individual experiments, we observed that ants approaching from the primary branch tend to continue straight onto the main branch. Because the trunk is at the end of a series of such turns, this could explain why the ant colonies consistently chose to congregate in nest B3 which is adjacent to the trunk. However, while the ABM does project a bias for B3 visitation, there are other discrepancies in first-nest visitation between the ABM and the experimental data. Because the model assumes that turning biases are only influenced by junction handedness and the direction of approach, this discrepancy suggests that real ants’ turning choices could be influenced by some other factor, such as the branch size or the position of the junction in the overall structure.

Examining the colony level data, we see that while nest B3 is often heavily occupied, F1 was also frequently occupied and in one case even had the most ants. Nest F1 is not predicted to be heavily occupied according to the experimental data. Because the model assumes that turning biases are only influenced by junction handedness and the direction of approach, this discrepancy suggests that real ants’ turning choices could be influenced by some other factor, such as the branch size or the position of the junction in the overall structure.

Results

Figure 5: The number of worker ants in each nest at the end of each of the four colony experiments (colonies 21-BA2, 21-MW3, 21-SP2, 21-SP3).

Figure 6: Diagrams show the number of ants making turns on left and right handed junctions coming from either the main, primary, or secondary branches. Scatter plots illustrate bias for sharp turns (red) versus shallow turns (blue) from different incoming directions (purple).

Figure 7: The total number of ants that went into each nest in a over 10,000 ants for 50 time steps in the agent-based model.

Figure 8: The total number of times a nest was the first one visited by an ant in the individual experiments.

Acknowledgements
Thank you to J. Clinton for laying the groundwork of our tree design; S. Powell, M. Adams for collecting the ants and providing feedback on our design and analysis along with E. Robinson; F. Nickerson and T. Reese for helping with the experiments; and the Harvey Mudd Makerspace for their help throughout. Funding for this work was provided by Harvey Mudd College and the National Science Foundation award IOS-1755425.

References