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{chom, wyik, gmontanez}@hmc.edu

AMISTAD Lab, Department of Computer Science
Harvey Mudd College
Claremont, CA, USA

Abstract—With the rapid growth of large language models,
big data, and malicious online attacks, it has become increasingly
important to have tools for anomaly detection that can distinguish
machine from human, fair from unfair, and dangerous from
safe. Prior work has shown that two-distribution (specified
complexity) hypothesis tests are useful tools for such tasks,
aiding in detecting bias in datasets and providing artificial
agents with the ability to recognize artifacts that are likely to
have been designed by humans and pose a threat. However,
existing work on two-distribution hypothesis tests requires exact
values for the specification function, which can often be costly
or impossible to compute. In this work, we prove novel finite-
sample bounds that allow for two-distribution hypothesis tests
with only estimates of required quantities, such as specification
function values. Significantly, the resulting bounds do not require
knowledge of the true distribution, distinguishing them from
traditional p-values. We apply our bounds to detect student
cheating on multiple-choice tests, as an example where the
exact specification function is unknown. We additionally apply
our results to detect representational bias in machine-learning
datasets and provide artificial agents with intention perception,
showing that our results are consistent with prior work despite
only requiring a finite sample of the space. Finally, we discuss
additional applications and provide guidance for those applying
these bounds to their own work.

Index Terms—statistics, hypothesis testing, specified complex-
ity, anomaly detection, machine learning, bias, artificial agents

I. INTRODUCTION

Imagine you’re in a survival contest where contestants are
thrown into the wilderness and left to defend themselves.
The last survivor wins the game, and the other contestants
seek to eliminate you from the competition. One contestant
is an expert trapper, so you worry your surroundings may
contain hidden traps. However, these traps are constructed
from branches, leaves, and other natural components, making
them difficult to distinguish from random configurations of
foliage.

In order to distinguish a natural assemblage of branches
from an intentionally constructed trap, you examine the ar-
rangement of pieces in each pile to see how they differ from
the typical random bunches of foliage that one might encounter
in a forest. Previous work [1] provides a set of hypothesis tests
for this task. To determine the likelihood of an assemblage of
branches being a trap, the tests take into account both how
specific the instance is (in the context of the general space

of instances), as well as the probability of encountering the
assemblage.

However, consider the following complication–due to an
injury, you have diminished sight. Thus, you can’t easily
determine how many branches are present in this assemblage,
nor can you tell their orientations. However, you are able
to determine which part of the structure has branches and
which has leaves. In this case, it is harder to evaluate the
structure in front of you. The structure you imagine may
differ from the true form of the object by some margin of
error. The hypothesis tests of Montañez [1] require that the
exact specificity (degree of structure in relation to the rest of
the forest) and probability of encountering the object must
be known; however, with injured eyes, you cannot very well
determine the exact specificity of the object. Nevertheless,
you’d still like to make use of such hypothesis tests.

In this work, we present a set of finite-sample bounds for
two-distribution (specified complexity) hypothesis tests [1],
thereby enabling their use with sampling procedures rather
than exact calculations of specificity. These two-distribution
hypothesis tests have been previously applied to several tasks
including intention perception in artificial agents [2] and
identifying bias in machine learning datasets [3]. In both of
these prior applications, the specification function, which gives
a numerical value for the degree of structure an object holds,
was either computed through manual enumeration or a derived
combinatorial formula. While these both led to successful
calculations of the specification function and enabled the use
of two-distribution hypothesis tests, the function may not
always be easily computed, and many practitioners may not
wish to spend the time to derive analytical formulae. To enable
more widespread adoption of two-distribution hypothesis tests
by non-mathematicians, we propose estimation procedures to
replace exact computations for specificity, and prove novel
measure concentration bounds given such estimates.

We apply our new finite-sample bounds to the same tasks as
Hom et al. [2] and Yik et al. [3], obtaining similar bounds with-
out ever calculating the specification function directly, thereby
reducing the work required to conduct a two-distribution
hypothesis test. We also test our bounds on a scenario where
an instructor wishes to identify cheating amongst students on
a multiple-choice test. Unlike the previous problems [2], [3],
the specification function for this scenario has not yet been



enumerated. Overall, our finite-sample bounds broaden the
range of applications for two-distribution hypothesis tests and
vastly streamline the testing procedure by requiring only a
simple sample to estimate the specification function.

The remainder of this paper is structured as follows. In
Section II, we provide relevant mathematical background for
two-distribution hypothesis tests [1] and review methods for
conducting them which use exact values for the specification
function. In Section III, we provide finite-sample bounds on
the two-distribution tests which enable their use even when
there is only a sampled estimate of the specification func-
tion, subject to some error. Section IV details some example
scenarios, where we show three distinct applications of the
finite-sample tests. Lastly, in Section V, we elaborate on the
benefits of our new finite-sample tests, including the reduction
of computation required to calculate the specification function.
We also discuss applications of these tests such as detecting
genetically-modified DNA, distinguishing the work of humans
from that of general artificial intelligence, and identifying
malicious network activity.1

II. BACKGROUND

This work builds upon the concept of specified complexity
[4], a measure of both how structurally organized and unlikely
an object is. In particular, objects with high specified complex-
ity are both specified (matching a predetermined form) and
complex (unlikely to occur under a given probability distribu-
tion). A specified complexity model consists of a complexity
function p(x) which captures how likely an element x is to
be selected from a space X , and a specification function ν(x)
which captures how coherent or structured x is. Following
Montañez [1], we begin with a few formal definitions.

Definition 1 (ν(X ), [1]). For any integrable nonnegative
specification function ν : X → R≥0, define ν(X ) as follows:

ν(X ) :=


∫
X ν(x)dx if continuous,∑
x∈X ν(x) if discrete,∫

X dν(x) in general.

Definition 2 (Common Form and Kardis, [1]). For any
probability distribution p(x) on space X , any strictly positive
scaling constant r ∈ R>0 and any nonnegative function
ν : X → R≥0, we define a common form model as

SC(x) := − log2 r
p(x)

ν(x)

with specified complexity kardis κ(x) = r p(x)
ν(x) .

Definition 3 (Canonical Specified Complexity Model [1]).
Any common form model constrained such that ν(X ) ≤ r
is a canonical specified complexity model.

1See source code and experimental notebooks at https://github.com/
AMISTAD-lab/finite-sample-bounds.

While there exist many canonical specified complexity mod-
els, the Functional Specified Complexity (FSC) model pro-
posed by Montañez [1] (based on functional information [5])
is particularly useful because it works with finite, discrete data
and eliminates the need to estimate the normalization factor r.
More importantly, FSC gives a more concrete way to compute
ν(x) based on a given function g : X → R≥0 that increases
with increasing degrees of extremity for an observation x.
Following [1], we define Mg(x) = |{x′ ∈ X : g(x′) ≥ g(x)}|,
which yields the functional specificity

Fg(x) =
Mg(x)

|X | .

With this in mind, we formally define FSC as follows.

Definition 4 (Functional Specified Complexity [1]). For func-
tion g, functional specificity Fg(x), and probability function
p : X → [0, 1], the functional specified complexity kardis is

κ(x) := |X |(1 + ln |X |) p(x)

Fg(x)−1
.

Given the functional specified complexity kardis, the functional
specified complexity (FSC) is thus

FSC(x) := − log2

[
|X |(1 + ln |X |) p(x)

Fg(x)−1

]
= − log2 r

p(x)

ν(x)

where we have defined r = |X |(1 + ln |X |) and ν(x) =
Fg(x)

−1.

Given the above definitions, Montañez [1] upper bounds the
probability of observing an outcome with specified complexity
at least as extreme as SC(x), as follows.

Theorem 1 (Conservation of Canonical Specified Complexity
[1]). Let p(x) be any discrete or continuous probability
measure on space X , let r ∈ R>0 be a scaling constant,
and let ν : X → R≥0 be any nonnegative integrable function
where ν(X ) ≤ r. Then

Pr

(
− log2 r

p(X)

ν(X)
≥ b

)
≤ 2−b,

where X ∼ p.

This probabilistic bound allows one to construct hypothesis
tests using the specified complexity value of a given object
b. Given a proposed probability measure p, we let X ∼ p.
Theorem 1 then allows for the calculation of 2−b which
behaves similar to a p-value, the probability of observing
another object at least as extreme as the one in question.
Should this value be less than a given significance level
α, we conclude that b is a statistically significant specified
complexity value and that p is not a plausible explanation for
the observation b.

Previous work has used this hypothesis testing framework,
called specified-complexity or two-distribution hypothesis test-
ing, for applications such as endowing an artificial agent

https://github.com/AMISTAD-lab/finite-sample-bounds
https://github.com/AMISTAD-lab/finite-sample-bounds


with intention perception [2] and identifying bias in machine
learning training data [3]. These hypothesis tests are described
as two-distribution hypothesis tests, since they make use
of both a probability distribution p(x) and a specification
distribution ν(x). While successful, a severe limitation of
these methods is that they require manual computation of
specification function values, namely ν(x). Even in the case
of FSC, previous researchers using two-distribution hypothesis
tests have had to compute functional specificity, Fg(x), either
by brute force or clever combinatorics in order to cover the
billions of possible specification values [2], [3]. Moreover,
the computation of the specification function was unique to
the specific problem at hand, meaning that, regardless of the
computational efficiency of the method, each new application
of two-distribution hypothesis tests could potentially require a
new method for quickly computing the specification function.
Our work addresses this current limitation of two-distribution
methods by proving finite-sample probabilistic bounds for
such hypothesis tests so that practitioners may simply sample
to form estimates without knowledge of the specification dis-
tribution, eliminating the need to compute exact specification
function values.

III. RESULTS

We present our main result first, which upper bounds the
probability of observing an object X with specified complexity
at least as extreme as SC(x), similar to Theorem 1. However,
unlike Theorem 1, ours only requires an estimate of the
specification function obtained via sampling, ν̂(x), rather than
the exact value, ν(x). As such, there is no requirement that the
exact specification distribution be known in advance. Lastly,
this bound may be used similarly to Theorem 1 to conduct
two-distribution hypothesis tests given a significance level α,
wherein a null hypothesis explanation for the observed object
may be rejected if Pr(SC(X) ≥ SC(x)) ≤ α.

Theorem 2 (Estimated Specificity Bound). Let

SC(x) = − log2 κ(x) = − log2 r
p(x)

ν(x)

where p(x) is any discrete or continuous probability measure
on space X , r ∈ R>0 is a scaling constant, and ν : X → R≥0

is any nonnegative integrable function such that ν(X ) ≤ r.
Let ν̂ be an estimate for ν where, with probability 1 − δ,
|ν(x)− ν̂(x)| < ϵ. Then,

Pr(SC(X) ≥ SC(x)) ≤ r
p(x)(1− δ)

ν̂(x)− ϵ
+ δ.

Just as FSC provides a concrete way to compute ν(x), a
modified version of Theorem 2 may be attained to provide a
more straightforward way to compute the probabilistic bound
of Theorem 2.

Corollary 1 (Functional Specificity Bound). Let

FSC(x) = − log2 κ(x) = − log2 [|X |(1 + ln |X |)Fg(x)p(x)]

where p(x) is a probability mass function on discrete finite
space X , and Fg : X → (0, 1] is the functional specificity.

Let F̂g be an estimate for Fg where, with probability 1 − δ,
|Fg(x)− F̂g(x)| < ϵ. Then,

Pr(FSC(X) ≥ FSC(x)) ≤ rp(x)(F̂g(x) + ϵ)(1− δ) + δ

where r = |X |(1 + ln |X |). When F̂g(x) is a Bernoulli
parameter estimate attained using a sample size of n, this
becomes

Pr(FSC(X) ≥ FSC(x)) ≤

|X |(1 + ln |X |)p(x)
(
F̂g(x) +

|Zδ/2|
2
√
n

)
(1− δ) + δ,

where Zδ/2 is the standard normal z-score for δ/2.

Notice that Corollary 1 essentially replaces the ν̂(x) − ϵ
term of Theorem 2 with a quantity only involving a sampled
Bernoulli parameter estimate, the number of samples taken,
and a z-score. The z-score may also be treated as a parameter
of the probabilistic bound, as it is directly related to the δ term.
That is, once one is chosen, the other may be calculated di-
rectly. We note that as δ decreases, the upper bound decreases
as well. However, since 0 ≤ δ ≤ 1, |Zδ/2| also increases,
which can increase the upper bound if F̂g(x)+ |Zδ/2|/(2

√
n)

is large. Thus, changing the value of δ can lead to trade-offs,
but these can be offset by increasing the number of samples
taken, n.

It is important to note that this probabilistic bound intro-
duces two new parameters compared to Theorem 1. These
parameters have a direct impact on the tightness of the bound,
and it is essential they are are chosen beforehand in order to
avoid “SC-hacking,” an equivalent exploitation as p-hacking
in traditional hypothesis testing (see Section V).

We also introduce a probabilistic bound on the weighted
sum of multiple specified complexity values, which allows one
to combine multiple specified complexity models.

Corollary 2 (Combined Specificity Estimation). Let
SC1(x), . . . , SCm(x) be canonical specified complexity
models sharing a common probability function p(x). Define a
set of mixture variables

Λ = {λi : i = 1, . . . ,m, 0 ≤ λi ≤ 1},
such that Σm

i=1λi = 1. Then for any such Λ,

Pr

(
m∑
i=1

λiSCi(X) ≥ SC(x)

)
≤

m∑
i=1

Pr(SCi(X) ≥ SC(x))

(1)

where each P (SCi(X) ≥ SC(x)) is calculated using Theo-
rem 2.

Lastly, we present a similar bound as Theorem 2 which
only requires a sampled estimate of the normalizing constant
r̂ instead of the estimated specificity term ν̂(x).

Theorem 3 (Probability Under r̂ for Bounded Specification
Function). Let

SC(x) = − log2 κ(x) = − log2 r
p(x)

ν(x)



and

r̂ := |X |
(
1

n

n∑
i=1

ν(xi)

)
where xi, . . . , xn is a set of n i.i.d. samples drawn uniformly
at random from space X . Assume ν(X) < k almost surely for
some positive scalar k. Then for any real number ϵ > 0,

Pr (SC(X) ≥ SC(x))≤
(
(r̂ + ϵ|X |)p(x)

ν(x)

)
[1− 2e−2nϵ2/k2

]

+ 2e−2nϵ2/k2

.

IV. EXAMPLES

We apply the results of the previous section to three different
scenarios, demonstrating the effectiveness of the finite-sample
bounds and illustrating potential use cases. The first scenario
involves a novel method for detecting cheating students on an
exam. We demonstrate how each of the components of Corol-
lary 1 may be calculated and thus show how our finite-sample
bounds may be used to conduct a two-distribution hypothesis
test even when exact specified complexity (SC) bounds have
not yet been computed. The remaining two examples recreate
scenarios from the existing literature, allowing us to compare
our bounds to exactly-computed analytical SC bounds.

The examples all follow a similar pattern. In particular, we
begin with an element x ∈ X , a null hypothesis proposed
distribution P such that X ∼ P , and a significance level
α. We then bound Pr(SC(X) ≥ SC(x)), the likelihood of
finding another element in X that is more extreme than x
under distribution P , using Corollary 1. If this probability
is less than α we reject the null hypothesis that P is a
probable explanation for x, and otherwise fail to reject this
null hypothesis. For the final two examples, we review how the
previous exact bounds were computed, compare this process
with the simpler sampling framework used for computing the
Corollary 1 estimate, and then compare the two bounds. For
all examples, we use α = 0.05, δ = 0.01 (which corresponds
to |Zδ/2| = 2.576), and n = 10,000,000 samples.

A. Detecting Student Cheating

Our first scenario considers an instructor who is interested
in determining the likelihood that a group of students cheated
on a multiple-choice test through dishonest collaboration. In
particular, the instructor is interested in the probability that
two students’ exams would be as similar as an observed pair
by pure chance. Calculating this probability using Corollary
1 first requires us to define the extremity function g(x). In
practice, this should capture extremity in an object along an
axis that a practitioner wishes to investigate. For our scenario,
g(x) should represent the degree of similarity between two
students’ exams. While tempting to define g(x) based on the
number of questions for which a pair of students gave the
same answer, several well-performing students may have the
same correct answers on many questions. Rather, one would
be more suspicious of illicit collaboration between students if
their incorrect answers matched. Thus, we define g(x) as the

ratio of the number of questions for which two students gave
the same wrong answer to the total number of questions both
students got wrong (regardless of which wrong selection they
made). For this hypothetical scenario, we implicitly assume
that wrong answers are more or less uncorrelated between
honest students.

With this definition of g(x) in mind, the next term we
need to compute in order to use Corollary 1 is the estimated
proportion of objects more extreme than the observed one,
F̂g(x). In this scenario, this is the estimated proportion of all
possible multiple choice test submissions which are more sim-
ilar to a reference student’s exam than the other non-reference
student. The choice of which student we use as the reference is
arbitrary. In practice, the most straightforward way to compute
F̂g(x) is to uniformly sample n random multiple-choice test
submissions. That is, we generate n test submissions whose
answers to each question are random. For each of these tests,
we compute g(x) and count the number which have a greater
g(x) value than the non-reference student. This count divided
by the number of samples n yields our desired F̂g(x). If no
randomly generated tests have a greater g(x) value than the
non-reference student, we simply set F̂g(x) = 1/n. One could
also use Good-Turing frequency estimation in this case [6], but
we found no significant difference in results using this method.

The last terms to calculate in order to conduct our two-
distribution hypothesis test are |X | and p(x). The former is
simply the number of possible objects in the space of interest.
In our case, this may be calculated by raising the number of
choices per question to the number of questions. For p(x), we
take into account that there is some large probability that a
student will answer a question correctly, which for this test, is
historically 92% on average. When a student gets a question
wrong, they do so with equal probability across the four
remaining (wrong) answer choices. Assuming independence
among questions, this gives us a weighted “coin-flip” model
for student submissions, which is weighted heavily towards
correct answers (increasing the number of matching questions
expected), but which does not affect our specificity model. We
note that even a simplified naı̈ve model that assigns uniform
probability across all five answer choices would work for this
hypothetical example.

With all of the above terms defined, we may conduct our
two-distribution hypothesis test. To illustrate, we create an
extreme example in which two students each submit a fifty-
question, five-choice test, both get the same twenty questions
wrong, and their answers to those twenty questions are all the
same. This gives |X | = 550 and p(x) = 0.9230(0.08/4)20.
Lastly, our sampling empirically yielded F̂g(x) = 1/n =
1/10,000,000 and applying Corollary 1 gives

P (SC(X) ≥ SC(x))

≤ |X |(1 + ln |X |)p(x)
(
F̂g(x) +

|Zδ/2|
2
√
n

)
(1− δ) + δ

= 0.0351.

Since this is less than our significance level of α = 0.05, we



reject the null hypothesis that random chance is a plausible
explanation for the similarity in two students’ exam submis-
sions.

We can also explore a scenario where an instructor is
suspicious of a group of three students. Two of these students
have the same test submissions as in the previous example.
However, the third student also gets twenty questions wrong,
but only fifteen of them are the same incorrect answers as
the other students. In this case, we may use the combined
SC estimation from Corollary 2. Using the same |X |, p(x),
and g(x) definitions from above as well as the same sampling
method for F̂g(x) yields P (SC(X) ≥ SC(x)) ≤ 0.0702.
Since this bound is greater than our significance level of
α = 0.05, we fail to reject the null hypothesis that random
chance is a plausible explanation for the three students’ exam
submissions. This aligns with the intuition that an instructor
should be less confident that a larger group of students are all
illicitly collaborating.

B. Intention Perception in Artificial Agents

Our second scenario involves an artificial agent (depicted as
a gopher) whose objective is to survive without being caught
by traps. The gopher is equipped with intention perception, the
ability to detect whether a given configuration of components
is likely to be a trap left behind by another agent intending to
cause harm, or rather simply a random configuration that looks
like a trap. In practice, the intention-perception algorithm is
implemented by performing two-distribution hypothesis tests.
When presented with a configuration of components, the
gopher asks the question, “What is the probability that I
find another configuration that is at least as coherent (i.e.,
dangerous) as this one?” If this probability is sufficiently
low, the gopher agent will reject the null hypothesis that the
observed configuration is a random assortment of components
and will conclude that it was created with the intention of
harm. However, if the probability is high, the gopher will enter
the configuration so that it can eat the food within, extending
its life [2].

In this scenario, we use FSC to model the gopher’s per-
ceived danger level for a given configuration. We let the
extremity function g(x) be the number of coherent connections
per non-empty cell in a twelve-cell configuration. A coherent
connection is defined as a connection between two wires with
the same thickness, at the correct orientation. For instance,
the configuration on the left in Figure 1 has four coherent
connections, one between each of the projectile-firing end
pieces (called arrows) and the wires, and one between each of
the wires and the door, while the configuration on the right has
one coherent connection, between the wires at the top left of
the configuration. A non-empty cell is defined as any cell that
has a wire or arrow. The configuration on the left in Figure
1 has four nonempty cells, while the figure on the right has
nine. Thus, for the configuration on the left, g(x) = 4/4 = 1,
and for the configuration on the right, g(x) = 1/9.

Previous work [2] has used Theorem 1 to directly com-
pute Pr(SC(X) ≥ SC(x)). As discussed in Section II,

Fig. 1: Two configurations in the simulated gopher world.

this requires the calculation of Fg(x) = Mg(x)/|X |, the
proportion of possible configurations more extreme than the
observed one. To compute Fg(x), Hom et al. [2] pre-computed
Mg(x), the number of configurations with a level of function
greater than or equal to that of x, for every possible ratio
g(x) of coherent connections to nonempty cells. Using these
methods, the bound obtained using the exact specificity of each
configuration is Pr(SC(X) ≥ SC(x)) ≤ 2.6× 10−12 for the
configuration on the left and Pr(SC(X) ≥ SC(x)) ≤ 34.4
for the configuration on the right. Note that although the result
is greater than 1 for the figure on the right, this simply reflects
the lack of structure in the configuration. Therefore, when
α = 0.05, the gopher agent would reject the null hypothesis
that the configuration was randomly generated for the trap on
the left, but fail to reject it for the configuration on the right,
allowing the gopher to selectively enter configurations.

While computing the exact value of Mg(x) allows us to
use Theorem 1 to perform two-distribution hypothesis tests
and ultimately determine whether a given trap configuration
is likely to be dangerous, this method may not always be
feasible. In this scenario, we assumed that the gopher agent
had a knowledge of the entire space of possible configurations.
However in practice, an artificial agent will likely have only
seen some subset of these configurations. Additionally, even
if the agent does have a knowledge of the entire space
of configurations, configurations of larger dimensions than
the one in this scenario would likely require much more
computation.

Therefore, we now show how one can still use two-
distribution hypothesis tests to model the intention percep-
tion algorithm with unknown ν(x). Instead of pre-computing
Mg(x), we instead generate a uniform random sample of
configurations and count the number of these configurations
that are more extreme than x to obtain the estimate ν̂(x). After
using the same methods as [2] to compute |X | and p(x), we
can then apply Corollary 1 to determine the likelihood that



this configuration is dangerous to the agent.
We now apply this process to the configuration on the left

of Figure 1. This configuration has four coherent connections
and four nonempty cells, so g(x) = 4/4 = 1. Thus, applying
Corollary 1 gives Pr(SC(X) ≥ SC(x)) ≤ 0.0268. Since
0.0268 < α, we reject the null hypothesis that the config-
uration was randomly generated in favor of the alternative
hypothesis that the configuration was designed by an agent
who intended to cause harm to the gopher.

We can also apply the same process to a randomly generated
configuration, such as the one on the right in Figure 1. This
configuration has one coherent connection and nine nonempty
cells, so g(x) = 1/9. Applying the same process as before,
we conduct our two-distribution hypothesis test to obtain
Pr(SC(X) ≥ SC(x)) ≤ 32.8. Since 32.8 > α, we fail
to reject the null hypothesis that the trap was randomly
generated. Note that Corollary 1 gives an upper bound on
Pr(SC(X) ≥ SC(x)) rather than the true probability itself.
Thus, the fact that the bound is greater than 1 simply reflects
that the configuration does not exhibit large degrees of coher-
ence.

Despite only using the estimated value ν̂(x), the results
are strikingly consistent with those of Hom et al. [2]. These
examples demonstrate that two-distribution hypothesis tests
can still equip an agent with intention perception even when
the agent does not have the knowledge to compute the exact
value of ν(x).

C. Identifying Bias in Data

While the gopher agent in the previous section uses two-
distribution hypothesis tests to distinguish random and de-
signed traps, these hypothesis tests may also be used to detect
representational bias in tabular machine learning datasets [3].
That is, given some proposed fair distribution, two-distribution
hypothesis tests may be used to measure the deviation of an-
other dataset from it, a measure of potential bias. Importantly,
this may be done without the need to first train a model on
the potentially-biased data to analyze its output.

As in Yik et al. [3], we test the well-known COMPAS
(Correctional Offender Management Profiling for Alternative
Sanctions) dataset [7] for bias using two-distribution hypothe-
sis tests. This dataset is used to train machine learning models
to predict the recidivism risk (low, medium, high) for a given
offender based on certain features such as their race, gender,
and type of offense. It has been previously shown that models
trained on this dataset without specific corrective measures
tend to label a disproportionate amount of African-American
people as having a high risk of recidivism [7]–[10].

Previous work [3] defined the extremity function g(x) as
the ℓ1 (city block) metric and used this function to capture the
distance from one distribution of recidivism risks to another.
In this instance, we are interested in the distance g(x) between
the recidivism risk distribution of African-Americans from that
of Caucasians and the number of possible datasets which could
produce a more extreme g(x). That is, the number of datasets
(of the same shape as COMPAS) which would be considered at

least as unfair as COMPAS. With this g(x) function, Yik et al.
[3] used a specialized combinatorial formula to systematically
count the number of possible datasets with a greater g(x) value
than COMPAS, namely Mg(x).

While useful, such a specialized routine for computing
Mg(x) and subsequently ν(x) may not be applicable for other
use cases of two-distribution hypothesis tests, and practitioners
may not have the expertise to derive such combinatorial
counting schemes. As such, we demonstrate that a two-
distribution test may still be conducted by only using the
sampled ν̂(x). Instead of computing Mg(x) by counting the
number of possible datasets with a greater g(x) value than
COMPAS, we adopt a simple sampling process as in the pre-
vious subsections. Specifically, we uniformly at random gen-
erate possible recidivism risk score distributions for African-
Americans, thereby estimating the number of possible datasets
of the same size as COMPAS which would be considered
more unfair. Using this, we calculate ν̂(x), our estimate for
the specification, as in the previous subsection. Finally, using
the same methods for computing |X | and p(x) as [3], we
conduct our two-distribution hypothesis test using Corollary 1
to obtain Pr(SC(X) ≥ SC(x)) ≤ 0.0100. While relatively
large compared to the exact probability bound of 2.4× 10−44

reported in Section 7.2 of Yik et al. [3], we find that the
bound is lower than our significance level of α = 0.05, so
we reject the null hypothesis regardless. Thus, while only
sampling a small fraction of all possible datasets in X , we
are able replicate the hypothesis test result of Yik et al. [3],
showing that two-distribution hypothesis tests remain viable
even when the exact distribution of ν(x) is not known.

V. DISCUSSION

The examples from Section IV demonstrate the utility of our
finite-sample bounds in detecting student cheating, providing
intention-perception to artificial agents, and identifying bias in
data. The bounds computed in all three examples are consistent
with the results of prior work, showing that finite-sample
bounds allow one to use the two-distribution hypothesis tests
introduced by Montañez [1] without incurring heavy computa-
tional costs or requiring complex combinatorics. Furthermore,
while empirical p-values require sampling from the true dis-
tribution under consideration, our two-distribution hypothesis
tests do not. This gives a major advantage in situations where
sampling from the true distribution is costly or impossible.

In particular, applications such as identifying genetically
modified DNA, distinguishing the outputs of artificial in-
telligence from those of humans, and detecting malicious
network activity all involve large sample spaces or a significant
possibility of errors in sampled data, making it difficult or
impossible to compute exact quantities. When examining
genetically modified DNA, for instance, researchers likely
only have a small subset of the DNA sequences of a given
species. The role of physical equipment in DNA sequencing
also introduces the potential for errors, such that it may be
difficult for researchers to be certain that they are sampling
from the true distribution. When distinguishing the output of



artificial general intelligence from that of humans, we likely
won’t be able to compute metrics on all of human or artificially
generated text or video. Similarly, when detecting malicious
network activity, one can only access some sample of global
network activity. Therefore, our finite-sample bounds broaden
the range of applications for two-distribution hypothesis tests.

One might note that although the bounds given in Section IV
match the results of prior work, the bounds obtained are higher
than the exact bounds given by existing methods [1]. However,
this simply reflects the greater amount of uncertainty of using
a finite sample as opposed to computing exact quantities. To
reduce this uncertainty, one can take a larger sample size or
change their choice of the δ parameter.

A. Parameter Choice for δ and n

When using Corollary 1 to conduct two-distribution hypoth-
esis tests, the user may choose any values for δ and n such
that 0 ≤ δ ≤ 1 and n ∈ Z+. For the experiments in Section
IV, we chose δ = 0.01 and n = 10,000,000. However, it may
make sense to choose a different values for δ and n depending
on the particular application.

The effect of δ and n on the error of the bound is shown in
Figure 2. To calculate the error, we compare the Corollary 1
estimate with the exact bound given by Theorem 1. For fixed δ,
the error of the bound decreases as n, the number of samples,
increases. This is expected, as using a larger proportion of
the sample space should cause |Zδ/2|/(2

√
n) to decrease for

a given confidence level 1 − δ. Thus, in order to obtain a
tight bound, it is advantageous to sample a large number of
instances n. Ultimately, the value of n that one chooses will
be a trade-off between decreasing |Zδ/2|/(2

√
n) and the cost

of obtaining more samples.
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Fig. 2: The error in Pr(SC(X) ≥ SC(x)) for a trap with
g(x) = 4/4 varies with respect to n and δ.

As δ increases for any fixed n, the curve representing
the error of the bound first decreases and then increases. To
understand why this is the case, consider varying δ and holding
all other quantities constant. Note that Zδ/2 is not constant,

as Zδ/2 is the z-score corresponding to δ/2. As stated in
Corollary 1, 1− δ is the probability that |Fg(x)− F̂g(x)| < ϵ.
The bound given by Corollary 1 therefore consists of two
terms, the first which encompasses the contribution to the
probability for the case where |Fg(x) − F̂g(x)| < ϵ, and
the second which encompasses this contribution for the case
where |Fg(x) − F̂g(x)| ≥ ϵ. As δ increases, both 1 − δ
and |Zδ/2|/(2

√
n) decrease, so the first term of the bound

decreases while the second increases. As δ decreases, the
opposite occurs. The trade-off between minimizing these two
terms of the equation is reflected by the shape of the curves
in Figure 2. In particular, the minimum of each curve is the
“optimal” value for δ that gives the bound with the smallest
error.

Given that there is an “optimal” value for δ, one may be
tempted to take a sample of n elements, observe the estimated
value ν̂(x), and then try a range of δ values to find the
tightest possible bound. Or, after failing to reject the null
hypothesis, one might be tempted to increase n to lower the
bound. However, both of these are forms of “SC-hacking”, the
practice of adjusting the parameters of a specified complexity
hypothesis test after already having observed the data in order
to report a more significant result [1]. SC-hacking is analogous
to p-hacking and allows for the influence of bias as well as
false positives, or the incorrect detection of anomalies where
there are none.

To avoid SC-hacking, one can instead use a “placeholder”
value for ν̂(x) to try various values of δ and n before observing
the true value of ν̂(x). This is a similar to estimating the effect
size, the difference in group means, in an intervention-based
study to determine the sample size n required to avoid Type
II errors [11]. Although effect sizes in the traditional sense do
not apply directly to our work, as our hypothesis tests do not
involve control and intervention groups, using a placeholder
value for ν̂(x) plays a similar role to estimating an effect size
by allowing us to choose suitable values for δ and n and reduce
Type II errors.

After finding a placeholder value for ν̂(x), one might
suggest finding the first derivative of the resulting bound with
respect to δ in order to choose the δ parameter that gives the
tightest bound. However, note that Zδ/2 is the z-score that
corresponds to a p-value of δ/2, that is, Zδ/2 = Φ−1(δ/2).
We cannot differentiate Φ−1(δ/2) with respect to δ since Φ−1,
the probit function, does not have a closed-form expression
[12]. Therefore, in practice, we suggest either using numerical
methods such as gradient descent or simply testing a range of
values for δ and choosing the one that gives the tightest bound.

Beyond malicious tampering of the δ and n parameters, SC
hypothesis tests, like their traditional p-value contemporaries,
are also prone to hacking via multiple hypothesis testing.
Although our work only tests single hypotheses, a malicious
practitioner could, for example, preprocess the data of Section
IV-C and conduct an SC test multiple times until a significant
result is seen. In order to avoid such SC-hacking, users of our
SC tests seeking to explore multiple hypotheses must proceed
with the same caution they would have when testing multiple



hypothesis with a traditional test. Correction methods for
multiple hypothesis testing include the Bonferroni correction
[13], Tukey’s honestly significant difference (HSD) test [14],
and the Benjamini-Hochberg procedure [15].

VI. RELATED WORK

Anomaly detection is the practice of identifying data points
that deviate from the normal behavior of the rest of the dataset.
Chandola et al. give a survey of anomaly detection tech-
niques, including classification, clustering, nearest neighbor
and density methods, statistical methods, information theoretic
techniques, and deep learning [16]–[20]. These methods have
been applied widely across various domains, including com-
puter networking [21], [22], DNA sequencing [23], [24], and
detecting artificially generated text [25], [26].

Our work builds on previous work done in statistical
anomaly detection. In particular, Montañez reduced specified
complexity testing to a form of statistical hypothesis testing,
demonstrating that one can conduct a two-distribution hy-
pothesis test by comparing the canonical specified complexity
kardis to an α value [1]. This form of hypothesis testing
allows one to consider the specificity, or degree of structure,
of an instance, in addition to the complexity, or how likely the
instance is to be selected from a given space. Importantly, these
two-distribution hypothesis tests are distinct from p-values, as
they can be used for arbitrary probability distributions. Speci-
fied complexity as a mathematical concept was introduced by
Dembski [4], and subsequently refined by Dembski, Marks,
Ewert, and others [27]–[31].

The hypothesis tests proposed by Montañez [1] have been
shown to be useful in multiple contexts. Dı́az-Pachón, Hössjer,
and their collaborators have proposed two-distribution hy-
pothesis tests for a variety of applications, ranging from
epistemology to biology [32]–[35]. Hom et al. used these
hypothesis tests to provide artificial gopher agents with a
form of intention perception, allowing the gopher agents to
distinguish randomly generated traps from ones that were
intentionally designed to hurt the gopher [2]. Yik et al. applied
the tests to the well-known COMPAS dataset, and found that
the dataset has bias in African-American recidivism scores [3].
However, in prior studies, the exact specificity value for each
instance had to be calculated using complex combinatorics and
numerical methods in order to conduct the two-distribution
hypothesis test. Our work provides bounds that allow one to
use the hypothesis tests originally proposed by Montañez [1]
without the need to compute exact specificity values, reducing
the need for these computations and significantly broadening
the range of use cases for these hypothesis tests.

VII. CONCLUSION

The ability to distinguish normal from extreme, fair from
unfair, and dangerous from safe has become increasingly im-
portant in today’s data-driven world. Two-distribution hypoth-
esis tests, which capture both the probability of observing and
object and its degree of structure, have proved to be a useful
tool for detecting such anomalies and have previously been

applied to endow artificial agents with intention perception
[2] and identify bias in machine learning training data [3].
These hypothesis tests rely on calculating the probability that
a specified complexity value more extreme than that of a given
object would be observed at random. However, calculating the
specificity portion, ν(x), required by these tests can often be
tedious, time-consuming, and specific to the task at hand, due
to the requirement of brute-force computation for each ν(x)
value or the need to design a custom combinatorial method
to avoid this computation. As such, practitioners hoping to
use two-distribution hypothesis tests may be limited by the
difficulty of analytically calculating the specificity term. We
present a set of finite-sample probabilistic bounds for two-
distribution hypothesis tests which only require a sampled
estimate, ν̂(x), of the specificity value. This lowers the barrier
for using two-distribution tests from analytically computing
the specificity term to deriving a simple sampling procedure
for objects in the problem space. A similar bound for two-
distribution tests which only requires a sampled estimate of
the normalizing constant r is also presented. We apply our
new bounded hypothesis tests to three scenarios. In the first,
we explore how an instructor may detect unpermitted student
collaboration on a test, illustrating how practitioners may make
use of the new hypothesis tests in their work. In the remaining
two applications, we recreate scenarios from the literature [2],
[3] and compare our new finite-sample bounded results to the
exactly-computed values. Overall, we find that two-distribution
hypothesis tests may still be conducted effectively using our
probabilistic bounds in place of analytical values. Lastly, we
explore the effect of the δ parameter and sample size n on our
bounded hypothesis tests and again warn against the possibility
of statistical misuse.

Future work includes exploring scenarios where the com-
plexity term p(x) may be difficult to compute analytically
instead of the specificity term ν(x) or normalizing constant r.
Similarly bounded hypothesis tests that only require a sampled
estimate of p(x) may also prove useful for practitioners
wishing to apply two-distribution hypothesis tests to novel
scenarios such as distinguishing text generated by a large
language model from work written by humans and detecting
malicious network activity. Furthermore, we primarily explore
functional specified complexity in this work, but other types of
specified complexity such as quantitative irreducible complex-
ity [1], [36] may also be worth considering. Exploring possible
applications of our various bounded two-distribution hypoth-
esis tests within these frameworks may open new avenues for
identifying anomalous artifacts.
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APPENDIX

A. Proofs

Theorem 2 (Estimated Specificity Bound). Let

SC(x) = − log2 κ(x) = − log2 r
p(x)

ν(x)

where p(x) is any discrete or continuous probability measure
on space X , r ∈ R>0 is a scaling constant, and ν : X → R≥0

is any nonnegative integrable function such that ν(X ) ≤ r.
Let ν̂ be an estimate for ν where, with probability 1 − δ,
|ν(x)− ν̂(x)| < ϵ. Then,

Pr(SC(X) ≥ SC(x)) ≤ r
p(x)(1− δ)

ν̂(x)− ϵ
+ δ.

Proof. Let b := SC(x), A denote the event |ν(x)− ν̂(x)| < ϵ,
and A denote the set complement of A. By the Law of Total
Probability,

Pr(SC(X) ≥ b) = Pr(SC(X) ≥ b | A) Pr(A)

+ Pr(SC(X) ≥ b | A) Pr(A)

≤ Pr(SC(X) ≥ b | A) Pr(A) + Pr(A)

where the inequality holds because probabilities are upper
bounded by 1. By our conditions, Pr(A) = 1− δ, giving

Pr (SC(X) ≥ b) ≤ Pr(SC(X) ≥ b | A)(1− δ) + δ. (2)

Note that whenever A holds,

b = − log2 r
p(x)

ν(x)
≥ − log2 r

p(x)

ν̂(x)− ϵ
,

thus implying

Pr

(
SC(X) ≥ b

∣∣∣∣A) ≤ Pr

(
SC(X) ≥ − log2 r

p(x)

ν̂(x)− ϵ

∣∣∣∣A)
≤ r

p(x)

ν̂(x)− ϵ
,

where the final inequality follows from application of Theorem
2 of Montañez [1]. Substituting this upper bound into (2), we
obtain the desired result.

Corollary 1 (Functional Specificity Bound). Let

FSC(x) = − log2 κ(x) = − log2 [|X |(1 + ln |X |)Fg(x)p(x)]

where p(x) is a probability mass function on discrete finite
space X , and Fg : X → (0, 1] is the functional specificity.
Let F̂g be an estimate for Fg where, with probability 1 − δ,
|Fg(x)− F̂g(x)| < ϵ. Then,

Pr(FSC(X) ≥ FSC(x)) ≤ rp(x)(F̂g(x) + ϵ)(1− δ) + δ

where r = |X |(1 + ln |X |). When F̂g(x) is a Bernoulli
parameter estimate attained using a sample size of n, this
becomes

Pr(FSC(X) ≥ FSC(x)) ≤

|X |(1 + ln |X |)p(x)
(
F̂g(x) +

|Zδ/2|
2
√
n

)
(1− δ) + δ,

where Zδ/2 is the standard normal z-score for δ/2.

Proof. Let b := FSC(x), A denote the event |Fg(x) −
F̂g(x)| < ϵ, and A denote the set complement of A. By the
Law of Total Probability,

Pr(FSC(X) ≥ b) = Pr(FSC(X) ≥ b | A) Pr(A)

+ Pr(SC(X) ≥ b | A) Pr(A)

≤ Pr(FSC(X) ≥ b | A) Pr(A) + Pr(A)

where the inequality holds because probabilities are upper
bounded by 1. By our conditions, Pr(A) = 1− δ, giving

Pr (FSC(X) ≥ b) ≤ Pr(FSC(X) ≥ b | A)(1− δ) + δ.
(3)

Letting r := |X |(1 + ln |X |), we note that whenever A holds,

b = − log2 [rp(x)Fg(x)] ≥ − log2[rp(x)(F̂g(x) + ϵ)],

thus implying

Pr (FSC(X) ≥ b | A)

≤ Pr
(
FSC(X) ≥ − log2[rp(x)(F̂g(x) + ϵ)] | A

)
≤ rp(x)(F̂g(x) + ϵ),

where the last inequality follows from application of Theorem
2 of Montañez [1]. Plugging this into (3), we obtain the first
desired result.

For the second form, under uniform sampling to estimate
the population Bernoulli parameter Fg , we have that with
probability 1− δ,

ϵ ≤ |Z δ
2
|
√

Fg(x)(1− Fg(x))

n

≤ |Z δ
2
|
√

0.5(0.5)

n

=
|Z δ

2
|

2
√
n
.

Replacing ϵ with this upper bound gives the second result.

Remark: Given that r = |X |(1+ln |X |), under a uniform p(x)
this bound will require a number of samples on the order of
(ln |X |)2 before it becomes nontrivial.

Corollary 2 (Combined Specificity Estimation). Let
SC1(x), . . . , SCm(x) be canonical specified complexity
models sharing a common probability function p(x). Define a
set of mixture variables

Λ = {λi : i = 1, . . . ,m, 0 ≤ λi ≤ 1},
such that Σm

i=1λi = 1. Then for any such Λ,

Pr

(
m∑
i=1

λiSCi(X) ≥ SC(x)

)
≤

m∑
i=1

Pr(SCi(X) ≥ SC(x))

(1)

where each P (SCi(X) ≥ SC(x)) is calculated using Theo-
rem 2.



Proof. Following the proof of Theorem 5 in [1],

Pr

(
m∑
i=1

λiSCi(X) ≥ SC(x)

)

≤Pr

(
m∑
i=1

λi max
i=1,...,m

SCi(X) ≥ SC(x)

)

≤Pr

(
max

i=1,...,m
SCi(X)

m∑
i=1

λi ≥ SC(x)

)

≤Pr

(
max

i=1,...,m
SCi(X) ≥ SC(x)

)

≤Pr

 ∨
i=1,...,m

SCi(X) ≥ SC(x)


≤

m∑
i=1

Pr(SCi(X) ≥ SC(x)).

Theorem 3 (Probability Under r̂ for Bounded Specification
Function). Let

SC(x) = − log2 κ(x) = − log2 r
p(x)

ν(x)

and

r̂ := |X |
(
1

n

n∑
i=1

ν(xi)

)

where xi, . . . , xn is a set of n i.i.d. samples drawn uniformly
at random from space X . Assume ν(X) < k almost surely for
some positive scalar k. Then for any real number ϵ > 0,

Pr (SC(X) ≥ SC(x))≤
(
(r̂ + ϵ|X |)p(x)

ν(x)

)
[1− 2e−2nϵ2/k2

]

+ 2e−2nϵ2/k2

.

Proof. For any canonical specified complexity model with

r =
∑
x∈X

ν(x)

we have

|r̂ − r| =
∣∣∣∣∣|X |

(
1

n

n∑
i=1

ν(xi)

)
− |X |

(
1

|X |
∑
x∈X

ν(x)

)∣∣∣∣∣
=

∣∣∣∣∣|X |
(
1

n

n∑
i=1

ν(xi)−
1

|X |
∑
x∈X

ν(x)

)∣∣∣∣∣
= |X |

∣∣∣∣∣ 1n
n∑

i=1

ν(xi)− EUX
[ν(X)]

∣∣∣∣∣ .

Let A denote the event that |r̂−r| ≤ ϵ|X | (where we scale by
|X | since we expect the error to accumulate as the size of the
space increases). Invoking Hoeffding’s Inequality we obtain

1− Pr (A) = 1− Pr (|r̂ − r| ≤ ϵ|X |)
= Pr (|r̂ − r| > ϵ|X |)

= Pr

(
|X |
∣∣∣∣∣ 1n

n∑
i=1

ν(xi)− EUX
[ν(X)]

∣∣∣∣∣ > ϵ|X |
)

= Pr

(∣∣∣∣∣ 1n
n∑

i=1

ν(xi)− EUX
[ν(X)]

∣∣∣∣∣ > ϵ

)
≤ 2e−2nϵ2/k2

.

Furthermore, letting b := SC(x), we have

Pr

(
SC(X) ≥ b

∣∣∣∣ A) = Pr

(
κ(X) ≤ r

p(x)

ν(x)

∣∣∣∣ A)
≤ Pr

(
κ(X) ≤ (r̂ + ϵ|X |)p(x)

ν(x)

∣∣∣∣ A)
≤ (r̂ + ϵ|X |)p(x)

ν(x)

where the final inequality follows from Corollary 1 of
Montañez [1]. Thus, we conclude that

Pr (SC(X) ≥ b) ≤ Pr

(
SC(X) ≥ b

∣∣∣∣ A)Pr(A) + 1−Pr(A)

≤
(
(r̂ + ϵ|X |)p(x)

ν(x)

)
Pr(A) + 1− Pr(A)

≤
(
(r̂ + ϵ|X |)p(x)

ν(x)

)
[1− 2e−2nϵ2/k2

]

+ 2e−2nϵ2/k2

.
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