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Summary

� Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regu-

lation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the

environmental controls over iso/anisohydry and the implications of flexible hydraulic regula-

tion for plant productivity remain unknown.
� In Juniperus osteosperma, a drought-resistant dryland conifer, we collected a 5-month

growing season time series of in situ, high temporal-resolution plant water potential (Ψ) and
stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation

associated with environmental covariates and evaluated how predawn water potential contri-

butes to empirically predicting carbon uptake.
� Juniperus osteosperma showed less stringent hydraulic regulation (more anisohydric) after

monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and

corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes

and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably

resolving GPP underestimation before vegetation green-up.
� Flexible hydraulic regulation appears to allow J. osteosperma to prolong soil water extrac-

tion and, therefore, the period of high carbon uptake following monsoon precipitation pulses.

Water potential and its dynamic regulation may account for why process-based and empirical

models commonly underestimate the magnitude and temporal variability of dryland GPP.

Introduction

Along the soil–plant–atmosphere continuum, gradients of water
potential (Ψ) drive water transport and govern the trade-off
between obtaining carbon dioxide for photosynthesis and water
loss through stomata (Berry et al., 2010). The concept of a ‘plant
water use strategy’ encompasses the numerous ways plants have
evolved to confront this inescapable dilemma, including the pre-
valent iso/anisohydry spectrum based on the stomatal regulation
of Ψ (Jones, 1998; Tardieu & Simonneau, 1998). Isohydry
describes a conservative stomatal strategy to minimize reductions
in Ψ and preserve hydraulic conductivity, while anisohydry is a
profligate stomatal strategy that prioritizes carbon gain at the
expense of low Ψ. The degree of iso/anisohydry describes plant
strategy in response to declining soil moisture absent other limit-
ing factors (Novick et al., 2019) and is generally operationalized
as a species-level and theoretical trait. However, recent work has
demonstrated that these strategies can be quite variable within a
species and may arise from plant–environment interactions

(Hochberg et al., 2018), including vapor pressure deficit (VPD),
which is often decoupled from soil moisture at short timescales
(Novick et al., 2016). Within-species shifts in iso/anisohydry
have been observed for Larrea tridentata (Guo et al., 2020) and
Quercus douglasii (Feng et al., 2019) during different seasons,
in Quercus suber in response to competition (Haberstroh
et al., 2022), Acacia aptaneura as a result of repeated experimental
drought (Nolan et al., 2017), and in multiple species between
wet and dry years (Wu et al., 2021).

The implications of temporally variable hydraulic strategies on
ecosystem carbon (C) fluxes have not been fully elucidated. This
knowledge gap may limit accurate modeling of carbon and water
cycle dynamics, which in turn restricts our ability to predict and
mitigate climate change impacts (Kennedy et al., 2019; Novick
et al., 2022). Particularly in dryland ecosystems, persistent water
limitation and episodic precipitation promote tight coupling
between carbon and water cycles (Biederman et al., 2016), result-
ing in added temporal complexity that can be difficult to model
(Noy-Meir, 1973; Loik et al., 2004; Ogle & Reynolds, 2004;
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Feldman et al., 2018). Dryland ecosystems are largely responsible
for the interannual variability of the global carbon sink (Poulter
et al., 2014; Ahlström et al., 2015), yet dynamic global vegetation
models have been found to significantly underestimate the inter-
annual variability of C uptake in dryland regions (Biederman
et al., 2017; MacBean et al., 2021). Understanding the temporal
dynamics and environmental sensitivity of plant hydraulic strate-
gies may be critical to improving predictive forecasts of the global
carbon cycle (Eller et al., 2020; Sabot et al., 2020, 2022).

Despite its importance, plant hydraulic stress is often notably
absent from large-scale estimates of ecosystem productivity
(Smith et al., 2019). Such models commonly combine remotely
sensed indices of vegetation greenness and light use efficiency
(LUE; Running et al., 2004; Zeng et al., 2022), defined as the
slope of the relationship between biomass and cumulative
intercepted photosynthetically active radiation (Monteith
et al., 1977). Greenness indices can represent the structural capa-
city for photosynthesis on a seasonal basis (Wang et al., 2022),
but do not capture the sub-daily constraints imposed by soil and
atmospheric drought, such that productivity seasonality is much
weaker in remotely sensed than tower-based fluxes (Garbulsky
et al., 2008; Biederman et al., 2017; Smith et al., 2019; Pierrat
et al., 2021). Instead, water stress effects are typically incorpo-
rated into estimates of LUE using moisture scalars derived from
estimates of VPD (e.g. MODIS LUE; Zhao & Running, 2010),
remotely sensed vegetation or evaporative indices (e.g. eddy cov-
ariance; (EC)-LUE model Yuan et al., 2007), or combined VPD
and soil moisture (e.g. CFLUX; King et al., 2011). However, the
range of ecophysiological responses to moisture stress are too
complex for a single environmentally derived indicator or func-
tion to adequately represent (Zhang et al., 2015). Plant water
potential, a direct metric of plant water stress that integrates soil
and atmospheric drivers, may thus provide a key physiological
constraint on ecosystem productivity, which could improve our
ability to represent drought impacts and quantify interannual
variability of C uptake.

Pinyon-juniper woodlands are broadly distributed in the
southwestern United States and provide a well-studied test system
for how hydraulic strategies like iso/anisohydry can modulate
productivity and mortality (McDowell et al., 2008). Pinyon mor-
tality following the 2002–2003 drought was likely associated
with differences in plant hydraulic regulation (Breshears
et al., 2009; Plaut et al., 2012); juniper survival was largely attrib-
uted to a less hydraulically vulnerable xylem and thus a greater
ability to withstand low water potentials (McDowell
et al., 2008). Although generally considered anisohydric, Juni-
perus monosperma exhibited strong stomatal control and negligi-
ble xylem embolism under drought manipulation (Garcia-Forner
et al., 2016b), thereby challenging the hypothesis that anisohyd-
ric species are more prone to hydraulic failure. As the southwes-
tern US megadrought persists (Williams et al., 2022) and induces
mortality even among resilient Juniperus spp. (Kannenberg
et al., 2021), it is imperative to examine how flexible hydraulic
strategies interact with plant productivity and survival.

In this study, we utilize a 5-month time series of plant Ψ and
gross primary productivity (GPP) in a juniper woodland to

evaluate the temporal dynamics of hydraulic strategy and
incorporate plant water stress into a common GPP framework.
Previous work by Guo et al. (2020) examined dynamic hydraulic
strategy in L. tridentata but lacked a co-located time series of eco-
system carbon fluxes. By contemporaneously measuring plant Ψ
and GPP continuously at daily resolution, we can directly investi-
gate the implications of Ψ regulation and hydraulic status for
productivity in an iconic southwestern species. We ask:
(1) Does plant hydraulic regulation vary over time in Juniperus
osteosperma?
(2) How are temporal patterns in hydraulic regulation related to
GPP over a growing season?
(3) Can GPP prediction be enhanced by plant water potential?

Materials and Methods

This study was conducted at an early-successional pinyon-juniper
woodland (37.5241N, 109.7471W, 1866 m asl) in southeastern
Utah. Local climate conditions include cold winters and hot, dry
summers, with high interannual variability in summer precipita-
tion due to its location at the northern boundary of the North
American Monsoon. The locally flat topography is dominated by
Utah juniper (J. osteosperma (Torr.) Little, 92% tree basal area)
and two-needle pinyon (Pinus edulis Engelm., 8% tree basal
area), with sparse understory comprising big sagebrush (Artemisia
tridentata Nutt.), prickly pear cactus (Opuntia spp.), and bunch-
grasses. Mean growing season leaf area index was 0.4, and the site
was chained in the 1960s, resulting in a relatively even-aged and
sized population of J. osteosperma. See Kannenberg et al. (2023)
for further site description and processing of eddy covariance
variables.

Plant water potential

Stem water potential of seven mature J. osteosperma within the
tower footprint (< 20 m) was monitored with both automated
and manual measurements between May 24 and November 5,
2021. Half-hourly water potential was monitored with stem psy-
chrometers (ICT International PSY1) calibrated before installa-
tion. Two instruments per tree were installed by removing the
bark and phloem to expose a flat xylem surface. Psychrometer
sensor heads were attached with self-adhesive silicone tape to
maintain a tight seal and wrapped in reflective insulation to mini-
mize temperature gradients. Because plant wounding responses
can fill the sensor chamber, each psychrometer was uninstalled,
cleaned with chloroform, and reinstalled on a new branch every
4–5 wk. The day after reinstallation, the xylem water potential
was measured manually with a Scholander-type pressure chamber
(PMS 610) by excising a needle cluster with diameter between 2
and 4 mm and measuring within 2 min of collection; psychrom-
eter water potentials generally matched pressure chamber values
(Kannenberg et al., 2023).

The half-hourly stem water potential time series were subjected
to quality control by visual assessment and aggregated to daily
values. After removing data during the maintenance period (+
1 d) and outliers that were > 0.5MPa from adjacent points, data
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that met the following criteria were also discarded: (1) a step
change in the magnitude of water potential not attributable to a
precipitation event; (2) loss of diurnal pattern in water potential.
On average, data from 10 out of 14 psychrometers were available
during a given period. Half-hourly stem water potential was sum-
marized to predawn (ΨPD, 2 h before sunrise) and midday (ΨMD,
2 h following solar noon) for each logger. In addition, site-level
means of predawn and midday water potential were calculated
and missing values (10 and 8, respectively) were imputed using
Kalman Smoothing via the R package IMPUTETS (Moritz &
Bartz-Beielstein, 2017).

Vegetation indices and fAPAR

We adopted a Monteith light use efficiency framework (Mon-
teith, 1972) to estimate plant productivity. This framework con-
ceptualizes GPP as the product of absorbed photosynthetically
active radiation (APAR) and the efficiency with which light is con-
verted to fixed carbon (LUE). APAR is represented as a product of
photosynthetically active radiation (PAR) and the fraction of PAR
absorbed by plant canopies (fAPAR). The foundational equation
fromMonteith’s framework can be expressed as:

GPP ¼ LUE� PAR � fAPAR Eqn 1

Many current models for estimating GPP are grounded in this
framework or its variations. Here, we used the near-infrared
reflectance of vegetation index (NIRv Badgley et al., 2017, 2019)
as a proxy for fAPAR. This choice was informed by the strong
correlation between NIRv and modeled fAPAR across various
soil reflectance and its robustness at low vegetation cover (Badg-
ley et al., 2017; Wang et al., 2022).

We calculated NIRv from Moderate Resolution Imaging Spec-
troradiometer (MODIS) nadir bidirectional reflectance distribu-
tion function adjusted daily reflectance product (MCD43A, 1 d,
500 m, collection 6.1) using the point extraction tool AppEARS.
MODIS bands 1 (620–670 nm) and 2 (841–876 nm) were com-
bined with background soil reflectance of 0.08 to represent NIRv
following Badgley et al. (2017). The pixel containing the coordi-
nates of US-CdM was filtered to include only the highest quality
observations (MODIS quality flag = 0). Resulting values were
smoothed using a Savitzky–Golay filter of derivative order 0, fil-
ter order 3, and window length 5.

Model description – hydraulic regulation

To specify the hydraulic regulation model, we used the Martı́nez-
Vilalta et al. (2014) equation to relate ΨMD to ΨPD:

ΨMD ¼ σ � ΨPD þ λ Eqn 2

where σ represents the stringency of hydraulic regulation and λ
describes the pressure drop when soil moisture is not limiting.
Plant hydraulic regulation can be described as isohydry if σ< 1,
anisohydry if σ≈1, and extreme anisohydry if σ> 1 (Martı́nez-
Vilalta et al., 2014).

To allow hydraulic regulation and GPP to vary over the grow-
ing season, we specified a hierarchical Bayesian model similar to
Guo et al. (2020), which estimated σ and λ as linear functions of
environmental drivers. Here, we used maximum daily VPD (D)
and volumetric soil water content at 10 cm (W10), which had the
highest correlation with plant Ψ and GPP (Kannenberg
et al., 2023). Furthermore, we implemented the stochastic ante-
cedent model (Ogle et al., 2015) to quantify the influence of past
environmental conditions. The data model for hydraulic regula-
tion describes the likelihood of each observed ΨMD, which was
normally distributed for each observation i (i ¼ 1, 2, . . . , 1425):

ΨMDi � Normal bΨMDi , σ
2
Ψ

� �
Eqn 3

where bΨMDi is the predicted or mean midday water potential and
σ2Ψ represents the observation variance. bΨMDi was modeled
according to Eqn. 3, where all terms were allowed to vary over
time, either as direct observations (ΨMD, ΨPD) or as modeled
parameters (σ, λ). The time-varying estimates of hydraulic regula-
tion, σ and λ were indexed by i and modeled as linear combina-
tions of two antecedent covariates and their interaction:

σi ¼ β0 þ β1 � Dant
i þ β2 �W10

ant
i þ β3 � Dant

i �W10
ant
i

þ Eσ,t ið Þ
λi ¼ α0 þ α1 �Dant

i þ α2 �W10
ant
i þ α3 � Dant

i �W10
ant
i

þ Eλ,t ið Þ
Eqn 4

The β and α parameters were estimated for all trees. Eσ and Eλ

represent the random effects of each tree, where t ið Þ indicates tree t
associated with each observation i. Dmax andW10 were scaled using
the 2021 mean and SD so that regression coefficients could be com-
pared and β0 and α0 could be interpreted as σ and λ, respectively,
under mean environmental conditions. Antecedent VPD (Dant)
and soil water content (W ant

10 ) were constructed using daily time
series of each scaled environmental variable (Ogle et al., 2015):

Dant
i ¼ ∑

Tlag

p¼0

ωDp �Dt ið Þ�p

W ant
10i

¼ ∑
Tlag

p¼0

ωWp �Wt ið Þ�p

Eqn 5

where p indicates the time step, Tlag represents the total number
of past time steps considered, ωDp and ωWp indicates the weight
or relative importance of the pth time step into the past, and
Dt ið Þ�p and Wt ið Þ�p are the observed value of each variable at p
time steps ago. Antecedent covariates are weighted averages of
past covariate values, where the weights are stochastically deter-
mined by the data. Here, Dant was constructed using daily values
from the current day to 4 d ago (p = 1, Tlag = 5), while W ant

10 was
constructed using 3-d averages of W10 from the current day to
20 d ago (p = 3, Tlag = 7).
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To complete this model, a zero-centered hierarchical normal
prior was specified for tree random effects:

Eσ,t � Normal 0, σ2σ
� �

Eλ,t � Normal 0, σ2λ
� � Eqn 6

where reparameterization by sweeping was employed to ensure
identifiability between the intercepts (β0, α0) and the random
effects (Vines et al., 1996).

All remaining parameters were given standard priors following
Gelman et al. (2014). The regression coefficients were assigned
relatively noninformative normal priors centered at zero with
large variance. Antecedent importance weights, vectors of length
Tlag (Eqn. 5), were given noninformative Dirichlet priors that
assume a priori that each past time step has equal importance,
and that constrain weights for each covariate to sum to 1 across
all time steps, p. The SD of tree random effects (σσ and σλ) were
given relatively noninformative Uniform 0, 1ð Þ priors, while the
measurement error precision (1=σ2Ψ) was assigned a conjugate,
relatively noninformative Gamma 0:1, 0:1ð Þ prior.

Model description –GPP

To assess the drivers of daily ecosystem productivity, we devel-
oped a two-part model based on the Monteith (1972) frame-
work. In this model, daily GPP was modeled sequentially, first as
a function of NIRv and incoming PAR. The residuals of this
model were considered indicative of variation in LUE.

Typically, LUE is conceptualized as the product of its theoretical
maximum (LUE0) and a function of environmental stressors that
reduce optimal light use efficiency. Given that LUE0 is a theoretical
construct assumed to remain constant within our study (e.g. within
a season), the GPP model residuals can be interpreted as (1)
impacts of environmental stressors on LUE and (2) random noise
or uncertainty inherent in the data. Thus, while we evaluated GPP
model residuals as functions of water stress indicators, including
VPD, soil moisture, and predawn water potential, we also acknowl-
edge that they include data uncertainty and random noise.

The likelihood of observed GPP was normally distributed for
for each observation j (j ¼ 1, 2, . . . , 166):

GPPj � Normal dGPPj , σ2GPP
� �

Eqn 7

where dGPPj is the predicted or mean daily GPP and the variance
σ2GPP represents the uncertainty in observed GPP. dGPPj was
modeled as a linear function of NIRv, PAR, and their interaction,
representing the photosynthetic-capacity component of the Mon-
teith (1972) formulation.

dGPPj ¼ γ0 þ γ1 �NIRvj þ γ2 � PARj þ γ3 �NIRvj � PARj

Eqn 8

All remaining parameters were given standard priors as pre-
viously described.

To interpret the remaining GPP as LUE, we calculated the
residuals of the above model as the posterior mean of
GPPj�dGPPj ; residuals were scaled for improved model mixing.
The likelihood of the residual model described scaled resid as
normally distributed for observations k (k ¼ 1, 2, . . . , 166):

residk � Normal dresidk , σ2resid
� �

Eqn 9

where dresidk is the predicted residual between observed and
modeled (Eqns 7, 8) GPP, and the variance σ2resid represents the
uncertainty in observed resid. dresidk is interpreted as a dynamic
LUE constraint on GPP after vegetation greenness and light
interception is accounted for. We devised three LUE formula-
tions that account for the combined impact of concurrent VPD
and antecedent soil moisture (Eqn. 10), antecedent soil moisture
alone (Eqn. 11), and concurrent predawn water potential
(Eqn. 12):

dresidk ¼ δ0 þ δ1 � Dmaxk þ δ2 �W ant
10k

þ δ3 � Dmaxk �W ant
10k

Eqn 10

dresidk ¼ η0 þ η1 �W ant
10k

Eqn 11

dresidk ¼ θ0 þ θ1 � ΨPDk Eqn 12

where ΨPD were the gapfilled means of predawn water potential
at the site level. Antecedent weights for W ant

10 were constructed
identically to Eqn. 5, with unique weights determined by the
GPP residuals.

Model implementation and interpretation

The above models were implemented in JAGS 4.3.0 (Plum-
mer, 2003) using R 4.1.1 and RJAGS 4.13 (R Core
Team, 2021; Plummer, 2022). For each model, three parallel
Markov chain Monte Carlo sequences were initiated with dis-
persed starting values; initial iterations were run until model
convergence, as indicated by the Gelman & Rubin (1992)
statistic. Models were then run for 150 000 iterations and
thinned by 50 to reduce within-chain autocorrelation
and storage requirements, yielding a total of 9000 relatively
independent posterior samples for each quantity of interest,
including the regression coefficients and antecedent weights.
Posterior distributions were summarized by their means and
95% highest posterior density credible intervals (henceforth,
95% CIs). Covariate effects were significant if the 95% CI
did not overlap zero. To quantify seasonal variation in σ, the
posterior samples of the β regression coefficients and antece-
dent weights were combined with the time series of scaled
Dmax and W10 to produce posterior means and 95% CIs.
Model comparison criteria for the three forms of GPP resi-
dual models included posterior predictive loss (Gelfand &
Ghosh, 1998) and the coefficient of determination (R2)
between observed and predicted values.
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Results

Seasonal dynamics of Ψ, GPP, and σ

Predawn (ΨPD) and midday (ΨMD) stem water potentials
responded dynamically to moisture inputs, particularly during
the monsoon period (Fig. 1). Monsoon onset, determined as the
day on which on the 10% of the total July, August, and Septem-
ber precipitation was accumulated (Grantz et al., 2007), occurred
on 2021-07-23. Before monsoon onset, the generally high VPD
and low soil moisture yielded relatively consistent mean ΨPD

between �2 and �4MPa. During the monsoon period, VPD
and soil moisture were less extreme than during the more arid
mid-summer period, though highly variable as a result of three
major pulse-drydown events (Fig. 1). Beginning with the first
major pulse event (39 mm on 2021-07-27), mean ΨPD remained
above �2MPa continuously for 46 d; however, minimum mean
ΨPD was similar in premonsoon and monsoon periods due to
rapid decline in ΨPD following the third major pulse-drydown.
Finally, mean ΨPD stayed above �2MPa during the fall season,
likely due to cooling temperatures and reduced atmospheric
demand.

Seasonal GPP dynamics were similarly responsive to precipita-
tion inputs (Fig. 1b). GPP declined during the premonsoon per-
iod to near-zero levels, while the onset of the monsoon prompted
sharp increases. Interestingly, while the first major pulse event
was the largest single-day total (39 mm on 2021-07-27) that cor-
responded to almost immediate increases in ΨPD, GPP rose only
modestly. All three peaks in GPP during the monsoon period
lagged the moisture inputs and lasted more briefly than peaks in
ΨPD (Fig. 1). Fall GPP averaged 0:1 molCO2m

�2 d�1, about
the same as initial GPP during the premonsoon period.

The dynamics of hydraulic regulation can be visually estimated
by plotting stem ΨMD and ΨPD for each season (Fig. 2). The
slope σ appeared similar during the premonsoon and fall periods,
although W, and therefore, stem Ψ differed substantially between
the two seasons. During the monsoon period, two slopes were
detected via segmented regression, with σ> 1 occurring when
soil moisture was high and ΨPD >�0:6 MPa; the same region
during the fall season had a much shallower slope.

Environmental drivers and timescales of σ

The hydraulic regulation model (Eqns 3–6) fit the data very well
(Supporting Information Fig. S1, observed vs predicted ΨMD

R2= 0.920) with low bias (slope of observed vs
predicted = 0.919).

Temporal variation in hydraulic regulation (σ) was strongly
positively associated with antecedent VPD (Dant), antecedent soil
water content (W ant

10 ), and their interaction (Fig. 3a), indicating
that J. osteosperma became especially anisohydric under dry atmo-
spheric conditions when soils were wet. While the positive effect
of D was primarily driven by the atmospheric dryness on the
same day, soil moisture up to 11 d prior was influential (Fig. 3b).
The pressure drop parameter λ was negatively associated with the

interaction of Dant and W ant
10 , although the main effects were not

significant (Fig. 3a).

Temporal patterns in σ and GPP

Although general trends in hydraulic regulation can be inferred
from grouping ΨMD and ΨPD by season (e.g. Fig. 2), the hier-
archical Bayesian model permitted combining posterior para-
meter distributions with environmental covariates to produce
daily time series of predicted σ (e.g. Fig. 4a), which cannot be
determined empirically. During the premonsoon, J. osteosperma
shifted between iso- and anisohydry, with σ values near 1. But
during the monsoon season, the three main pulse events heralded
peaks in σ that signify extreme anisohydry, with σ values well
above 1, driven by the high VPD and still-wet soils that charac-
terize the postprecipitation period. Finally, in the fall,
J. osteosperma returned to isohydry, and σ fell below 1.

The trends in daily σ corresponded well to observed time series
of GPP (Fig. 4a), particularly in the responsiveness of both σ and
GPP to the three main pulse events. Thus, σ and GPP were
positively correlated during the monsoon period
(r ¼ 0:653, P < 0:001, Fig. 4b). However, the peak in GPP
appeared to lead the peak in σ, as the highest Pearson’s correla-
tion between GPP and σ was achieved at a 1–2 d offset between
the two time series (Fig. 4c).

Plant water potential relationship to GPP

The initial GPP model (Eqns 7, 8) also fit the data well (Fig. 5c,
observed vs predicted GPP R2= 0.733), although with some
degree of bias (slope of observed vs predicted = 0.732) such that
some high GPP values were underpredicted. Comparing the
GPP and NIRv time series (Fig. 5a), the first major pulse event
elicited a strong GPP response before any green-up detected opti-
cally by NIRv. Conversely, low, near-zero GPP in mid to late
July was not matched by extreme lows in scaled PAR or NIRv,
resulting in overprediction of low GPP values. GPP was posi-
tively associated with NIRv and the interaction between NIRv
and PAR (Fig. 5b), though PAR alone was not significantly asso-
ciated with GPP.

Residuals from the initial GPP model were interpreted as fluc-
tuations in light use efficiency (LUE), and model fit was compare
among three functional forms: environmental covariates with D
and W ant

10 (Eqns 5, 10), soil water content with W ant
10 only

(Eqns 5, 11), and predawn water potential with ΨPD

only (Eqn. 12). Of the three models, the ΨPD model had the few-
est effective number of parameters (pD), lowest posterior predic-
tive loss (D∞), strongest coefficient of determination (R2), and
lowest bias (Fig. 6b,c).

Among the LUE models, the ΨPD fit the GPP residuals mod-
estly well (observed vs predicted resid R2= 0.199) while mini-
mizing posterior predictive loss (Fig. 6b). Combining the initial
GPP model and the best-performing LUE model using ΨPD

improved the overall R2 from 0.733 to 0.800 and substantially
reduced bias from 0.732 to 0.89 (Figs 5c, 6c).
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The strong performance of ΨPD for predicting GPP resi-
duals is likely due to their close temporal coherence (Fig. 6a),
which outperformed models with W ant

10 alone or in conjunc-
tion with D (Fig. 6b). The antecedent weights for W ant

10

(Fig. S2) indicated that GPP residuals lagged soil moisture by
3–5 d, but the temporally weighted soil moisture still did not

correlate as strongly with GPP residuals as ΨPD did. Surpris-
ingly, neither D nor W ant

10 was significantly associated with
the GPP residuals in the environmental covariates model
(Fig. 6b), perhaps because D and PAR were highly correlated
(Fig. 1) and the initial GPP model already accounted
for PAR.

Fig. 1 Daily time series of site-level
environmental conditions, plant water potential
of Juniperus osteosperma, and gross primary
productivity, (a) maximum vapor pressure deficit
(D) and photosynthetically active radiation
(PAR), (b) mean air temperature (Tair), volumetric
water content (VWC) at 5 and 10 cm, and total
precipitation (black bars), (c) chamber and
automated daily measurements of mean stem
water potential, and (d) total gross primary
productivity (GPP). Labeled boxes subdivide the
study period into premonsoon, monsoon, and fall
seasons; error bars represent population SD.

Fig. 2 Midday (ΨMD) vs predawn (ΨPD) stem
water potential of Juniperus osteosperma in each
season. Points are colored by the mean daily
volumetric water content at 10 cm (W10). Solid
line is the 1 : 1 line. Dashed lines represent linear
fits by season, with a segmented regression
joined at ΨPD of �0.6MPa during the monsoon
season.
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Discussion

In this study, we aimed to improve our understanding of
temporal variability in plant hydraulic regulation and its rela-
tionship to ecosystem carbon uptake. We leveraged contem-
poraneous, high-resolution water potential and carbon flux
data to compare temporal trends in daily plant water poten-
tial, hydraulic behavior, and GPP in a juniper woodland.
First, we found that in J. osteosperma, hydraulic regulation var-
ied over the growing season. Increasing anisohydricity was
observed following precipitation pulses, associated with high
soil moisture and high atmospheric demand (Fig. 3). Next,
we found that GPP and σ were most positively correlated

during the monsoon season, but with different temporal tra-
jectories following precipitation pulses (Fig. 4). Surprisingly,
although both ΨMD and ΨPD responded rapidly to precipita-
tion inputs, plants achieved maximum σ 1–2 d after peak
GPP was reached for a given moisture pulse (Fig. 4c).
Together, these results hint at the intriguing possibility that
extreme anisohydry can serve to maximize soil water extrac-
tion and prolong GPP pulses in dryland ecosystems. Finally,
predawn water potential explained more variability in GPP
compared to environmental covariates associated with atmo-
spheric and soil moisture conditions (Fig. 6). As a direct
metric of water stress, plant water potential closely matched
the timing of GPP variability not accounted for by light

Fig. 3 Coefficients estimated by the hydraulic
regulation model (Eqns 3–6) that linearly relates
ΨMD to ΨPD, where the slope (σ) and intercept (λ)
vary with antecedent environmental variables
Dant andWant

10 . Posterior mean and 95% credible
interval (CI) of the (a) covariate effects on σ and λ
and (b) antecedent weights ω associated with
covariates D andW10. Gray horizontal lines
indicate the prior means, asterisks indicate
significant covariate effects, and error bars
represent the 95% CIs.

Fig. 4 Comparison of the predicted slope σ,
representing the stringency of hydraulic
regulation, to gross primary productivity (GPP)
over the study period, including (a) a daily time
series across three seasons, (b) bivariate plots by
season, and (c) Pearson’s correlation coefficient
(estimate and 95% confidence interval) during
monsoon season across a range of daily offsets
where GPP leads σ. The predicted slope σ is
represented by the posterior mean and 95%
credible interval from the hydraulic regulation
model (Eqns 3–6). Solid line in (b) represents a
significant linear relationship between σ and GPP
during the monsoon season.

New Phytologist (2024) 243: 98–110
www.newphytologist.com

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

Research

New
Phytologist104

 14698137, 2024, 1, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19805 by C

larem
ont C

olleges L
ibraries, W

iley O
nline L

ibrary on [22/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Fig. 6 To evaluate the hydraulic constraints on
GPP after light use is accounted for, GPP
residuals (observed GPP minus modeled GPP)
were modeled with three sets of covariates:
vapor pressure deficit and soil water content
(‘Env’, Eqns 5, 10), soil water content (‘Soil only’,
Eqns 5, 11), and site-averaged predawn water
potential (‘Ψ only’, Eqn. 12). Model inputs are
shown as (a) time series of daily GPP residuals
with daily maximum vapor pressure deficit (D),
volumetric water content at 10 cm (W10), and
site-averaged predawn water potential (ΨPD), all
standardized to the same scale. Posterior mean
and 95% credible interval (CI) of the (b)
covariate effects and (c) predicted vs observed
residuals from the ‘Env’, ‘Soil only’, and ‘Ψ only’
models. Gray horizontal lines indicate the prior
means, asterisks indicate significant covariate
effects, error bars represent the 95% CIs, the
solid diagonal is the 1 : 1 line, and the dashed line
represents the line of best fit. Model comparison
statistics of effective number of parameters (pD)
and posterior predictive loss (D∞) are shown in
(b), wherein lower values indicate better
predictive performance.

Fig. 5 To account for the light use constraints on
gross primary productivity (GPP), GPP is modeled
as a function of near-infrared reflectance of
vegetation (NIRv) and photosynthetically active
radiation (PAR), including (a) a time series of GPP
with scaled values of NIRv and PAR, (b) posterior
mean and 95% credible interval (CI) of the
covariate effects, and (c) predicted vs observed
GPP from the initial GPP model (Eqns 7, 8). Gray
horizontal lines indicate the prior means, asterisks
indicate significant covariate effects, error bars
represent the 95% CIs, the solid diagonal is the
1 : 1 line, and the dashed line represents the line
of best fit.
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availability and vegetation greenness, underscoring water stress
as the dominant constraint on intra-annual GPP dynamics in
dryland ecosystems.

Temporally varying hydraulic behavior

Juniperus species are considered more anisohydric than
co-occurring pinyon pines due to their more cavitation-resistant
xylem (Linton et al., 1998), higher hydraulic safety margins
(Plaut et al., 2012), and lower leaf water potentials (West
et al., 2007; Breshears et al., 2009), while their categorization
based on stomatal control is less conclusive (Garcia-Forner
et al., 2016a). Due to less vulnerable xylem in Juniperus, low
water potentials alone do not suggest less stringent stomatal con-
trol, as they must be interpreted relative to vulnerability curve
parameters such as Ψ50, or the xylem pressure at 50% loss of
hydraulic conductance. Here, a 166-d time series of ΨPD and
ΨMD in J. osteosperma reveals strong, context-dependent variation
in hydraulic regulation, an intermediate timescale that can poten-
tially bridge the gap between short-term stomatal response-based
definition of iso/anisohydry (Tardieu & Simonneau, 1998) and
definitions that rely on seasonal extremes (Klein, 2014; Martı́nez-
Vilalta et al., 2021). We posit that response-based metrics (Kan-
nenberg et al., 2022) can be used to quantify plant water use stra-
tegies without distinguishing between active vs passive regulation,
yet can enhance predictive understanding of plant–environment
interactions.

Dry air in combination with wet soil drove large increases in σ
in J. osteosperma, attesting to the importance of VPD as a driver
of plant responses (Novick et al., 2016; Grossiord et al., 2020).
As the same drivers were important for hydraulic regulation in
the drought-tolerant desert shrub, L. tridentata (Guo
et al., 2020), transient drops in ΨMD may be strategic only during
the wet periods of otherwise water-limited ecosystems, when the
reward of carbon uptake exceeds the risk of embolism. In our
study, shifts to extreme anisohydry appeared only as responses to
discrete monsoon precipitation pulses, suggesting that flexible
hydraulic behavior enables J. osteosperma to take advantage of soil
moisture when available. The responsiveness of hydraulic beha-
vior to soil moisture may explain why, despite similar lateral root
densities as pinyon pines (Schwinning et al., 2020), junipers tend
to be more physiologically responsive to moderate moisture
inputs (Breshears et al., 1997; West et al., 2007; Guo
et al., 2018).

The positive relationship between σ and GPP during the mon-
soon season suggests that temporally variable hydraulic regulation
can maximize carbon uptake during periods of patchy moisture
availability. Most interestingly, the timing of σ and GPP indi-
cates that extreme anisohydry intensifies after GPP peaks. After a
precipitation pulse when soil moisture is high, GPP may be
immediately stimulated, such that relatively high midday water
potentials (low σ) are sufficient to drive water transport along the
soil–plant-atmosphere continuum. Because soil moisture declines
rapidly after precipitation pulses, extreme anisohydry (σ > 1)
may serve to decrease midday water potentials, maintain water
transport in drying soils, and possibly confer a competitive

advantage over co-occurring understory species (e.g. Barron-
Gafford et al., 2021). The propensity of Juniperus spp. to extract
soil water even at low soil water potentials (West et al., 2007) is
consistent with extreme anisohydry and prolonged elevation of
GPP as soils dry.

Possible mechanisms of temporally varying hydraulic
regulation

The mechanisms underlying temporally varying hydraulic regula-
tion are not well understood, but coordination with other tempo-
rally varying physiology and growth responses could play a role.
First, pressure-volume relationships in J. monosperma are plastic
depending on leaf hydration (Meinzer et al., 2014), such that as a
leaf dehydrates, it experiences more negative turgor loss point
and less elastic cell walls. Conceivably, stomatal regulation of leaf
water potential could also vary with leaf hydration, which may be
especially dynamic in evergreen leaves experiencing pulse-driven
precipitation. Accounting for plastic adjustment in turgor loss
point, J. monosperma would ultimately lose turgor at �8.2MPa
(Meinzer et al., 2014), and indeed 99.1% of our J. osteosperma
ΨMD observations occurred above this threshold. Temporally
varying leaf water relations may indicate that osmotic adjustment,
cell wall elastic properties, and stomatal regulation could vary in
concert to maintain turgor across declining leaf hydration.

Hydraulic regulation strategies could also be linked to tem-
poral dynamics of foliar ABA during soil water stress and recov-
ery (Brodribb & McAdam, 2013). In Callitris rhomboidea,
sustained water stress led to a decline in ABA such that loss of leaf
water potential (and thus guard cell turgor) drove stomatal clo-
sure, with the corollary of low ABA also enabling rapid recovery
of leaf water potential after rewatering (Brodribb & McA-
dam, 2013). Among Cupressaceae, including Juniperus and Calli-
tris, the use of leaf desiccation to close stomata during prolonged
water stress (Brodribb et al., 2014) could explain why
J. osteosperma experiences temporally varying hydraulic regula-
tion. The hydraulic risk of extreme anisohydry could also be par-
tially compensated by rapid recovery following rewetting,
enabling persistence in seasonally dry ecosystems.

Finally, temporally varying hydraulic regulation may be asso-
ciated with the timing of belowground dynamics that enable
increased conductance, such as fine root and mycorrhizal devel-
opment (Peek et al., 2006; Lehto & Zwiazek, 2011). In
J. osteosperma, fine roots grew when soil water was most available
and shifted toward deeper layers as the growing season progressed
(Peek et al., 2006), and root distributions varied depending on
cool-season vs warm-season precipitation. Rooting dynamics can
directly influence plant water potential via rhizosphere conduc-
tance, although this is difficult to quantify empirically (Bristow
et al., 1984; Sperry et al., 2016). Similarly, mycorrhizal sym-
bionts are known to alter root conductivity (Lehto & Zwia-
zek, 2011), enhance stomatal conductance (Augé et al., 2015),
and increase plant productivity (Mohan et al., 2014), but the
temporal dynamics of plant-mycorrhizas relationships under field
conditions are poorly understood and merit further investigation
(Gehring et al., 2017).
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Implications for hydraulic modeling

Plant hydraulic schemes are becoming increasingly represented in
vegetation and land surface models (Kennedy et al., 2019; Eller
et al., 2020; Sabot et al., 2020). The link we observed between
hydraulic strategy and GPP reinforces the value of these
approaches for improved predictions of GPP, especially in dry-
land ecosystems where patchy resource availability leads to wide-
spread underpredictions of both the magnitude and variability of
carbon fluxes (Biederman et al., 2017; Barnes et al., 2021; Mac-
Bean et al., 2021). Temporal heterogeneity in plant hydraulic
strategy and spatial heterogeneity in topoedaphic characteristics
may also interact, as evidenced by high variance in stem Ψ among
seven co-located trees (Fig. 1c), and contribute to model under-
performance in dryland ecosystems. However, if transient aniso-
hydry does indeed represent a life history strategy to maximize
carbon uptake during pulses of moisture availability, then models
will need to allow for vegetation hydraulic strategies to vary over
time in order to correctly estimate dryland GPP.

One avenue of model development operationalizes the trade-
off between carbon gain and hydraulic costs (Sperry et al., 2016;
Wolf et al., 2016; Mencuccini et al., 2019), a subset of stomatal
optimization models that accounts for the cavitation risk of low
plant Ψ (Wang et al., 2020). Temporally variable water use stra-
tegies may arise as an emergent property of such models (Kan-
nenberg et al., 2022), but likely only where the hydraulic costs of
anisohydry and the forfeited carbon gain of isohydry are simulta-
neously represented. Alternatively, improving the temporal fide-
lity of optimization models could involve explicit
implementation at multiple timescales (daily, weekly) to repre-
sent plant physiological acclimation to a changing environment
(Joshi et al., 2022). It remains an open question how best to
account for transient hydraulic strategies in modeling frame-
works, and further research regarding when, where, and how such
strategies arise is necessary to evaluate their role in improving esti-
mation of dryland carbon fluxes.

Importance of plant water potential at large scales

In our study of a single growing season, we found that predawn
water potential matches the temporal pattern of LUE even more
strongly than antecedent soil moisture, which comports with the
critical role of water potential to plant physiology. Importantly,
predawn water potential improved GPP model fit even though
measurement scales varied greatly, with NIRv derived from a
500 m pixel, GPP from a flux tower, and stand water potential
averaged from seven trees within the tower footprint, suggesting
that the theoretical foundation connecting plant hydraulics to
ecosystem productivity is robust to significant scale mismatch.
Inclusion of predawn water potential rather than VPD and soil
moisture improved not only model fit of GPP, but also the sig-
nificantly reduced model bias (Fig. 6), primarily by accounting
for the transition between dry season and first monsoon pulse,
wherein high predawn water potentials signal physiological readi-
ness for photosynthesis even though vegetation greenness is
still lagging. Overprediction of low premonsoon GPP and

underprediction of high monsoon GPP were strongly amelio-
rated by concomitant shifts in predawn water potential.

However, interpreting model residuals as indicative of varia-
tions in LUE must be approached with caution, as these residuals
also encompass data uncertainty and unaccounted factors. This
consideration is particularly important when extrapolating our
findings to broader contexts or different temporal scales. Despite
these considerations, the substantial improvement of GPP predic-
tions with the inclusion of predawn water potential underscores
its promise as a valuable indicator for capturing intra-annual
variability of dryland GPP and warrants additional investigation.

While continuous time series of plant water potential remain
rare, new technology and collective efforts are poised to increase
accessibility to this key metric. At large scales, promising path-
ways are being explored to develop remote sensing-based proxies
of plant water potential using thermal (Farella et al., 2022) and
microwave (Konings et al., 2021) observations. Current initia-
tives to collect and aggregate soil and plant water potential in
conjunction with flux tower measurements, including the Ameri-
flux ‘Year of Water’ and the PSInet Research Coordination Net-
work database, are anticipated to improve water potential data
availability and spur synthesis beyond single-site studies. We
believe that an expanded network of water potential measure-
ments co-located at existing flux tower sites is essential to cali-
brate and evaluate both model and remote sensing approaches for
estimating productivity.

Conclusions

Though classically considered anisohydric, J. osteosperma exhib-
ited multiple hydraulic regulation strategies within a growing sea-
son. Extreme anisohydry was only evident after monsoon
precipitation pulses, while soils were rapidly drying yet carbon
uptake was high. This suggests that temporally flexible hydraulic
regulation allows J. osteosperma to avoid extreme ΨMD and xylem
cavitation during seasonal drought and prolong high carbon
uptake following episodic precipitation events. Furthermore,
plant water potential significantly improved GPP model fit and
reduced bias despite significant scale mismatch, heralding the
immense potential of using plant water stress to increase the tem-
poral fidelity of ecosystem carbon predictions.
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