Intro Computing in 2035: We ve leveled up!*

Aditi Gargeshwari!, Bela Reis!, Claire Wang!, Heidi Repp!,
Karis Peebles!, Kevin Wang?, Vu Trinh?, Zach Wood!,
and Zachary Dodds!

"Harvey Mudd College; Claremont, CA 91711
2Stanford University; Stanford, CA 94305
3Claremont McKenna College; Claremont, CA 91711

agargeshwari,breis,clawang,hrepp,kpeebles,vtrinh,zwood
dodds@g.hmc.edu,kevjwang@stanford.edu
2Computer Science Department

Abstract

Having returned from a decade hence, we share some heartening — and
worrying — changes that Introductory Computing will be accumulating
over the next ten years. On the plus side, both student and instructor
agency — and resources — have increased dramatically. Standardized and
solely-software CS curricula, on the other hand, play a much reduced
role. The most valued skills were (1) self-directed new-system learning
and (2) novel problem solving across varied contexts, with both of these
(3) comfortably communicated, in person.

Based on what we’ve seen, in this work we share our current progress
toward implementing 2035’s Intro Computing mix. That mix includes
creative, open-ended system-building, individual system-vouching and
software-auditing, self-monitored skill-building, and face-to-face assess-
ment. Our initial attempts, we realize, do not capture all the opportu-
nities available, and this incautious approach is designed to maximize
community feedback. This feedback, we believe, is the most important
ingredient in aligning our curriculum-to-be with the class of ’35’s future
needs. Our goal is that, together, all of us in higher ed will make the
most and the best of what the next decade has in store!

*Copyright (©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 Background: Our Future Computational Selves

Culture and computing have been co-evolving for as long as they have both
been around [2, 3]. The decade ahead is poised to continue this tradition,
perhaps even more precipitously [1].

For its part, higher ed seeks to increase knowledge, savvy, and adaptability
by leveraging computing in service to humanity’s shared cultures.! This looks
quite different for introductory computing in 2035 than in decades past:

e In 2035, specifying-and-assessing-processes is no longer IntroCS’s core.
Core instead is growing new cognitive models for expressing and assessing
processes.? Which is to say, We’ve leveled up!

e IntroCS mixes hands-on, how-it-works insight across far more computa-
tional models, e.g., string-passing via the web, voltage-passing via wires,
meaning-passing via embeddings, value-passing via return, among oth-
ers. We're seeing and celebrating the water in which we swim.

e Professionally speaking, the center has not held. Demand is outside-in:
computing has seeped even deeper into cultural and corporate practices.
These capillary-level contexts are where value is sought and com-
municated. Computing-sans-context has gone the way of thinking-sans-
context, in terms of both personal and professional value.

2035 does share one feature with previous eras: everyone is born to com-
municate, but no one is born to compute.> Where computing is of value,
interventions — such as IntroCS — will be needed to tap it. Next, we share the
paths we are currently designing to tap that value:

2 Visualizations: Always Valuable, Newly Accessible

CS, and especially IntroCS, has always valued visualizations. They can, so of-
ten, effectively bridge human thought and computational workings. Given
the syntax-supporting and summary-suggesting capabilities of our toolsets,
student-authored visualizations have never been more accessible than in 2035.
To realize these opportunities, we are now expanding our use of the vpython 3d
library, of datavis via matplotlib and seaborn, and of purpose-built webapps,
expanding the computational models IntroCS explores.

1We acknowledge that higher ed may have other purposes, as well.
2Perhaps this isn’t a change at all, but it certainly feels like one.
3 Homo sapiens’ neurons may disagree, but they’re not doing so consciously... .

VPython is an object-oriented Python graphics library which used to be
a final-lab/final-project option for us. Now VPython appears in week 2, ac-
companying an assignment that models random walks. The “walker” is first
visualized in the terminal. From there, students copy their code into a prepared
VPython file, and see their implementation played out in 3d.

This assignment strongly emphasizes the 2025 experience of programming,
formal and informal. That is, receiving and adapting near-complete code from
resources like LLMs, often with little background knowledge. DIY-integration
like this builds confidence and independence — and sophistication with LLMs
as a resource.

VPython is leveraged in two more assignments: a game of LightsOut! im-
plemented at first in the terminal and a simulation for Conway’s Game of Life.
These experiences smooth the final-prject option of creating a VPython user-
interaction or game. This allows students interested in graphics to explore the
library based on their own interests and solidifies their ownership and agency
in the code.

Figure 1: Our additions of VPython include (left) a 1d walk animated with
3d scene objects, (middle) a 2d interface to Lights Out!/, and (right) user-
controlled simulation of Conway’s Game of Life. All such examples expand
students’ executable experience, regardless of LLM use.

Seaborn offers an onramp to the data-science subset of intro computing.
As computing edges toward becoming undergraduate-universal, so too will data
science skills. (Data scientists, naturally, trace this causality in the other di-
rection.?)

Either way, the intuition developed by distilling processes into datasets,
models, and graphs is central to many academic majors and many professional
paths. We introduce Seaborn, like VPython, by integrating it into preexist-
ing homeworks, each highlighting a different kind of graph: m-estimation by
“throwing darts” at a unit circle inscribed in a square, aggregating and present-

4We CS’ers note that execution is causation, even if correlation isn’t.

ing results within the random-walk and game-of-life assignments (rather than
animating their evolution, for which VPython is better), and plotting signals
in a lab that explores audio transformations.

Figure 2: Seaborn makes data visualization smooth, enabling students to cre-
ate their own summaries of (left) converging to = by dart-throwing, (middle
left) the lengths of many fixed-radius random walks, (middle right) live-cell
population sizes in Conway’s Game of Life, and (right) transforming audio
signals as lists of raw pressure samples. All students, especially those in data-
dependent disciplines outside of CS, benefit from this practice.

After completing these assignments, students have seen their code come to
light through provided graphics skeletons and then pick through the provided
code to personalize their graphics interfaces. This inside-out style of learning
helps students (1) realize they have full control of their software, (2) create
a visual portfolio to showcase for future audiences, and (3) stay motivated to
understand their code while still taking full advantage of AT tools.

3 Files+Folders: Unhiding our computing systems

Our sibling departments — especially in the natural, engineering, and axiomatic
sciences — have long asked IntroCS to introduce the command line and comfort
with the containment-hierarchy of files and folders. This is even more true
when leveraging Al, since LLMSs speak the language of the file system.

We thus believe additional practice is valuable, and this new unit reinforces
the shell commands pwd, 1s, and cd, and introduces a number of additional
commands and concepts alongside that foundation. To make what can seem an
esoteric experience both hands-on and memorable, we customized a fun, but
generic, command-line adventure so that it was set on our campus. Folders
represent places, e.g., nesting buildings and rooms, and their text files con-
tain descriptions providing context and clues. Following feedback from other
departments and majors, we embedded several novel skills and experiences:

e We included cat and common command-arguments, e.g., 1s -la

e With 1s -la, we then added “hidden portals,” i.e., dot files/folders.

e Because the campus is our setting, every student is invited to add their
own room to the adventure.

e Students can then contribute their locations on campus through the pub-
lic repository on Github. Eventually we hope students will expand the
adventure to cover all of campus and add their own secret folders and
further terminal commands. Indeed, exercising this level of individual
agency is a central goal of the experience.

e We integrated ssh into this adventure, with some of the clues hosted
elsewhere, Remote login via command-line is another skill often requested
by our fellow lab sciences (among others).

e In order to find the dorm and room with the treasure, student also prac-
tice executing command-line scripts, also widely requested. Because there
are hundreds of distractor files and rooms, it would be nearly impossible
to try opening every room to find the treasure. (We don’t mention cat
//*.txt, but we are thrilled if such "shortcuts" make the rounds!)

This scavenger hunt-style activity not only reinforces command-line profi-
ciency, but it also serves as an informal introduction to the campus — an added
benefit given that most students in the course are first-year students!

4 Hardware: Unboxing CS

Comfort with the command-line and filesystem does more than offer a shared
language. It also establishes an agency over and understanding of our own com-
putational processes. With details so readily available, it is this “big-picture
perspective” that becomes the central value of IntroCS. For example, our In-
troCS has traditionally introduced simulated circuits in order to reinforce that
there is “no magic” computational interactions are explainable and under-
standable “all the way down.”

To ground this understanding, we have expanded the course’s opportunities
from simulated hardware to physical hardware components such as transistors,
resistors, and integrated-circuit gates. The majority of IntroCS students choose
to major in engineering, and these experiences directly speak to their priori-
ties. (In addition, these challenges tend to pique the curiosity of all students,
because they are both so fundamental — and so rarel) At the beginning of
the week, students pick up a kit with adequate materials, and, throughout the
week, construct these circuits with the help of the lab guide:

Drain of transistor either “drains” voltage into the
longer side of the LED (in which case it lights up), OR
does not allow voltage to reach the LED in which case
it stays off. | |

Figure 3: By checking out low-cost components for a week, students (left)
establish transistor behavior (and build a NOT-gate from two transistors) and
(right) create a half-adder from standard AND, OR, and NOT gates. With an
Arduino this single half-adder computes arbitrary additions, illuminating each
bit, as it’s added, via LED! (Python handles only the storage of the bits.)

4.1 Microcontroller hardware

With Figure 3’s circuits, students use hardware to implement computation. We
believe an equally important experience — and widely applicable professional
skill — lies in using special-purpose hardware to augment computing’s reach.
From Professor Adam Blank’s IntroCS course at Caltech, we have adapted a
hardware unit built around the Adafruit Proximity Trinkey (Figure 4). The
Trinkey is a USB-A programmable microcontroller equipped with an Adafruit
Trinket MO and an APDS9960 sensor. Since the Proximity Trinkey acts as a
USB key, no cable is needed; it plugs directly into a USB-A port.

Our adapted assignment sequences microcontroller-interaction into three
component assignments:

e NeoPixel LED Lab: Students program an LED strip using the QT2040
and a NeoPixel breakout board, introducing students to serial communi-
cation and driving LEDs.

e Adapted Morse Code Assignment: Students program the Proximity Trinkey
to translate Morse Code into English in the serial port. This assignment
also introduces students to interfacing with sensors: capacitive touch
pads and proximity sensors.

e An HID Interaction Assignment: Optionally employing the Proximity
Trinkey, Wii Nunchuk, or Mini I12C Gamepad, students use a Human In-
terface Device library to interact with their computer, e.g., by triggering
keyboard commands to control gameplay in an existing app.

All instruction materials and starter code are provided in both Circuit-
Python and Arduino to accommodate varied student backgrounds and objec-

Figure 4: About the size of a quarter, the Adafruit Trinkey (left) is a USB-A
device with available buttons, proximity sensor, and LEDs: we borrowed Prof.
Adam Blank’s elegant Morse Code assignment. As a lab, students can connect
to pre-wired light strips (middle) to more dramatically illustrate their Lights
Out! programs. Hardware interaction is empowering and, sometimes addic-
tive. A discarded lidar, found and researched, yields maps of the engineering-
shop hallways (right). This independent, open-ended research exemplifies the
value of building a portfolio of Al-enabled interactions, proactively pursued
and communicated.

tives. These microcontroller-hardware experiences are intentionally scaffolded
with LLM support: the assignment invites students to proactively teach them-
selves, via strategic Al interactions, the skills needed to create and debug an
exemplar system. A concluding deliverable reflects on this proactive process.
It is this independent — and independently-directed — skill-building (as well
practicing the confidence to try it out) that are the most important learning
objectives of this hardware-themed unit.

5 Program-defined message-passing: APIs

In 2035, APIs have become a foundational component of IntroCS.> Whether
measured economically or culturally, API calls are the most important soft-
ware interaction. The coming decade’s Al-enabled programming-support both
epitomizes the centrality of API use — and offers the support needed to sup-
port their exploration and use from computing’s get-go. Happily, there is a
natural evolutionary path for API calls: the data they return is a wonderful
and practical application of Python dictionaries. This section will outline how
APIs can be integrated into a CS1 curriculum.

In our introductory computing course, students first use the GET method to
collect and interact with data from the International Space Station (ISS) API,
Pokemon API, and Wikipedia API. The ISS API is the starting point because
of its relatively readable response, which helps students feel more comfortable

50ne could even argue this is a decade or two late!

working with APIs. The students will then practice retrieving specific informa-
tion within the response. This exercise will help students practice dictionary
look up, an essential skill in working with API. Their next task will be to work
with the longitude and latitude returned by the API and to use a function
provided to calculate the distance from the ISS to a city of their choice.

json_contents = result.json()
print(json_contents) @

Take a look... how many _keys_ does this JSON file/Python dictionary have?

]

1

v {'timestamp': 1750720424, 'message': 'success', 'iss_position': {'latitude’': '©.9936', 'longitude’': '13.4440'}}

[

© #This will return the location of the link of pokemon cries
print(json_contents[‘cries’])

[44] from IPython.display import HTML

. . HN i the latest i but h it to
#This return the URL we are looking for, we are £ B0 GO (R WD S5 ERiE Wi S CEI GG e

i X audio_url = json_contents['cries’]['latest’]
url = json_contents['sprites']['front_default']

HTML(fF "

<audio controls>

HTML(' ") <source src="{audio_url}" type="audio/ogg">
</audio>

)

)

5% {'latest': 'https://raw.githubusercontent.com/PokeAPT/cries/|

b 000/00] emmmm——) i

Figure 5: API calls naturally reinforce foundational programming concepts,
e.g., dictionaries’ key-value pair organization, while offering authentic oppor-
tunities to individualize early-software experiences, e.g., by determining the
current location (and, from there, distance) to the ISS (top), by programati-
cally rendering a particular Pokemon (bottom left), even obtaining and play-
ing its unique cry! (bottom right)

For many, the Pokemon API offers an even more customizable and relat-
able challenge. Unlike the ISS API, the Pokemon API returns a much more
authentically complex dictionary (via JSON) with dozens of keys and subkeys,
making the data-selection process more demanding. This is a crucial challenge,
and one that Al tools are well-poised to assist — if a user knows what they
are looking for and what to expect in return! Students also experience — and
control — how APIs can return a variety of data formats, like images and audio
files — of Pokemon, even!

5.1 APIs as “real-world” software

Students follow these experiments with the Wikipedia API, which cleanly illus-
trates how every webservice and website are simply renderings of API calls —
and, what’s more, that they are able to programmatically access those calls and
results! The Wikipedia API also offers direct Python support, unlike the ISS

and the Pokemon APIs, so that students experience some of the wide variety
across APT use.

An exciting - and professionally relevant - facet of API use is designing,
deploying, and testing one’s own API. Using FastAPI, students first develop
and run small-scale APIs locally on their own machines. This is a valuable ex-
perience that helps students deepen their understanding that “the cloud” is just
other people’s computers, and how its data is accessed using the GET method.
As students build their APIs, they define multiple endpoints and use query
parameters to filter or customize the data returned by the API. Recognizing
— and controlling — the components of a URL underscores IntroCS’s primary
goal: students’ hands-on experiences of agency within the ambient oceans of
computational processes.

@ 127.0.0.1:8000/be

FastAP| %2

default @

/nunberadd1/{number} Nufoor Add Ono

<« c

/loveorhate/{object} Love

/bold_color_text/{color}/{text} e; Bokd Colorod Toxt

Figure 6: Building one’s own API conveys the agency we have over the compu-
tational interactions of contemporary experience, e.g., HTML pages as human-
readable results of API calls (left), the ease and power of making small, self-
authored functions API-accessible (middle), for which our approach is the
well-documented, widely-used FastAPI library.

The API-creating exercises are scaffolded to reveal these connections with
familiar artifacts (HTML pages). For example, the provided starting point is
a function that receives a color and a string (as URL-path components), and
their API returns a small HTML page, in bold and in that color. From there,
students create a new, more complex API where they will create a dictionary,
ultimately achieving behavior similar to the ISS, Pokemon, and Wikipedia
APIs used as initial examples.

FastAPI offers benefits beyond insight. As an industry standard, it au-
tomatically generates documentation for the APIs students create, inviting
(course-required) descriptions of what each endpoint does. This reinforces the
importance of API documentation, for both author and caller. The ability to
read and interpret documentation is a crucial skill, as it enables students to
learn new libraries and APIs independently. In this way, creating an API with
FastAPI equips students with a practical tool for self-directed learning.

6 A Preface, not a Conclusion

Contemporary forces have transformed computing from a “valuable specialty”
toward a “universal literacy.” This is both a challenge and an opportunity for
us as computing educators. On one hand, our audience is growing rapidly —
very few institutions and disciplines consider computing an optional experience
in 2025. That number will likely be fewer in 2035.

Yet the content of undergraduate-universal computing is changing at least
as rapidly. LLMs enable our students to be dramatically more efficient and ef-
fective in exploring and authoring computational processes. Given computing’s
universality, computing education’s responsibility is no longer tied to support-
ing specific professional paths (if it ever was). Instead, the IntroCS experiences
of the decade ahead will offer a hands-on mix of self-directed project-building
and -presentation.

To be sure, there will still be a need for syntactic sophistication. There will,
we hope, still be CS departments enthusiastically expanding the “magic” that
converts intent to source, source to semantics, and semantics to reliable value.

But in 2035 AI will precede CS, not follow it.% In disciplines or institutions
where every student engages with computing, it is crucial that the content of
Computingl be structured in a way that serves students independent of the
specifics of their future professional paths.

This work highlights our initial, awkward efforts toward a universal expe-
rience of computational ownership and agency. To this end, we look forward
to both feedback and pushback as part of linking efforts across higher ed. The
coming decade offers us all an “unavoidable opportunity.” We look forward to
tackling it — together.

Acknowledgement

The authors gratefully acknowledge resources from NSF DUE # and from
Google, as well as support from our respective institutions.

References

[1] Brianna Blaser. “RESPECT 2025: Designing an Accessible Future for Eq-
uitable Computer Science”. In: SIGCSE Bull. 57.2 (Apr. 2025), p. 4.

[2] Mark Guzdial and Daniel Reed. “Securing the future of computer science;
reconsidering analog computing”. In: Commun. ACM 56.4 (Apr. 2013),
pp. 12-13.

6We note this is already true, lexicographically...

10

[3] Markeya S. Peteranetz et al. “Future-Oriented Motivation and Retention
in Computer Science”. In: Proceedings of the 49th ACM Technical Sympo-
stum on Computer Science Education. SIGCSE ’18. Baltimore, Maryland,
USA: Association for Computing Machinery, 2018, pp. 350-355.

11

