3d-printed Computational Microscopy using Fourier Ptychography [Brake]
📢 Apply for this project by completing this form.
Project Description
The goal of this project is to develop a computational microscope using the UC2 system, a 3-D printed, reconfigurable optics platform that can be used to build compact and flexible optical systems. In particular, we will be implementing a microscopy technique called Fourier Ptychographic Microscopy (FPM) using the UC2 platform. You will have the opportunity to explore both experimental and computational aspects by building and working with a physical UC2 system and by collecting and processing your own experimental data.
Traditional optical systems trade off resolution and field of view. For example, consider a typical camera. You can either zoom out and capture a wide scene without fine details or you can zoom into the scene (e.g., by choosing a higher magnification lens) which enables you to resolve finer details, but at the price of a smaller field of view. This tradeoff is the result of the physical limits on the amount of information that can pass through an optical system.
However, recent advances in computation and digital cameras have provided opportunities to creatively bypass this limit. In particular, by rethinking the illumination scheme used in traditional imaging models, we can mix additional information into our images which can then be exploited in an image reconstruction algorithm to recover more information about our sample. In FPM, this is achieved by replacing the standard light source used in a microscope with a light emitting diode (LED) array. Then, by turning on different combinations of LEDs, we can introduce additional information into the captured images. This additional information enables high-resolution imaging with a wide field of view. In addition, the reconstruction algorithm further enables desirable features such as the ability to digitally refocus captured images, improve the contrast of transparent samples like cells which typically are hard to see in conventional microscopes, and correct for imperfections in the lenses of the microscope.
Relevant Papers
- UC2 – A Versatile and Customizable low-cost 3D-printed Optical Open-Standard for microscopic imaging
- Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware
📢 Apply for this project by completing this form.
As a member of the HMC Biophotonics Lab you will join a passionate group of budding researchers exploring the field of biophotonics and connecting your existing knowledge to generate new ideas. This project will help to create low-cost, compact, and reconfigurable optical microscopes which can be used for a variety of applications including laboratory imaging for diagnostics and for education.
In addition to this project, there are other efforts in the lab to develop optical tools to focus light deep into tissue by counteracting the scattering effect of biological tissue.